Advertisement

Precise Vehicle Cruise Control System Based on On-Line Fuzzy Control Learning

  • Enrique Onieva
  • Jorge Godoy
  • Jorge Villagrá
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 297)

Abstract

Usually, vehicle applications require the use of artificial intelligent techniques to implement control methods, due to noise provided by sensors or the impossibility of full knowledge about dynamics of the vehicle (engine state, wheel pressure or occupiers weight).

This work presents a method to on-line evolve a fuzzy controller for commanding vehicles’ pedals at low speeds; in this scenario, the slightest alteration in the vehicle or road conditions can vary controller’s behavior in a non predictable way. The proposal adapts singletons positions in real time, and trapezoids used to codify the input variables are modified according with historical data.

Experimentation in both simulated and real vehicles are provided to show how fast and precise the method is, even compared with a human driver or using different vehicles.

Keywords

Intelligent Transportation Systems Autonomous Vehicles Fuzzy Control On-Line Learning Speed Control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jones, W.D.: Keeping cars from crashing. IEEE Spectrum 38(9), 40–45 (2001)CrossRefGoogle Scholar
  2. 2.
    Pérez, J., Milanés, V., Onieva, E.: Cascade architecture for lateral control in autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems 12(1), 73–82 (2011)CrossRefGoogle Scholar
  3. 3.
    Onieva, E., Milanés, V., Gonzlez, C., De Pedro, T., Pérez, J., Alonso, J.: Throttle and brake pedals automation for populated areas. Robotica 28(4), 509–516 (2010)CrossRefGoogle Scholar
  4. 4.
    Eurobarameter, Use of intelligent systems in vehicles, European Commission (2006)Google Scholar
  5. 5.
    Naranjo, J.E., Gonzalez, C., Reviejo, J., Garcia, R., de Pedro, T.: Adaptive fuzzy control for inter-vehicle gap keeping. IEEE Trans. on Intelligent Transportation Systems 4(3), 132–142 (2003)CrossRefGoogle Scholar
  6. 6.
    Desjardins, C., Chaib-Draa, B.: Cooperative adaptive cruise control: A reinforcement learning approach. IEEE Transactions on Intelligent Transportation Systems 12(4), 1248–1260 (2011)CrossRefGoogle Scholar
  7. 7.
    Martinez, J.-J., Canudas-de-Wit, C.: A safe longitudinal control for adaptive cruise control and stop-and-go scenarios. IEEE Transactions on Control Systems Technology 15(2), 246–258 (2007)CrossRefGoogle Scholar
  8. 8.
    Davis, L.C.: Effect of adaptive cruise control systems on traffic flow. Phys. Rev. E 69(6), 066110 (2004)CrossRefGoogle Scholar
  9. 9.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Milanés, V., González, C., Naranjo, J., Onieva, E., De Pedro, T.: Electro-hydraulic braking system for autonomous vehicles. International Journal of Automotive Technology 11, 89–95 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Enrique Onieva
    • 1
  • Jorge Godoy
    • 1
  • Jorge Villagrá
    • 1
  1. 1.AUTOPIA programCenter for Automation and Robotics (CAR)MadridSpain

Personalised recommendations