Advertisement

Abstract

Piecewise Bilinear (PB) model is found to be a good general approximator for nonlinear functions. This paper deals with the problem of optimal PB modeling where we apply the least squares method in order to minimize the modeling error.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Khalil, H.K.: Nonlinear systems, vol. 122. Prentice-Hall, Upper Saddle River (2002)zbMATHGoogle Scholar
  2. 2.
    Isidori, A.: Nonlinear control systems, vol. 1. Springer (1995)Google Scholar
  3. 3.
    Sontag, E.: Nonlinear regulation: The piecewise linear approach. IEEE Transactions on Automatic Control 26(2), 346–358 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Johansson, M., Rantzer, A.: Computation of piecewise quadratic lyapunov functions for hybrid systems. IEEE Transactions on Automatic Control 43(4), 555–559 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Grandin, H.: Fundamentals of the finite element method. Macmillan (1986)Google Scholar
  6. 6.
    Imura, J., Van Der Schaft, A.: Characterization of well-posedness of piecewise-linear systems. IEEE Transactions on Automatic Control 45(9), 1600–1619 (2000)zbMATHCrossRefGoogle Scholar
  7. 7.
    Sugeno, M.: On stability of fuzzy systems expressed by fuzzy rules with singleton consequents. IEEE Transactions on Fuzzy Systems 7(2), 201–224 (1999)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Tanaka, K., Sugeno, M.: Stability analysis and design of fuzzy control systems. Fuzzy Sets and Systems 45(2), 135–156 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Lee, C.H., Sugeno, M.: An extension of stability condition for a class of fuzzy systems with singleton consequents and its application to stabilizing control of general nonlinear systems. J. Japan Soc. Fuzzy Theory Syst. 12(2), 266–285 (2000)Google Scholar
  10. 10.
    Sugeno, M., Taniguchi, T.: On improvement of stability conditions for continuous mamdani-like fuzzy systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 34(1), 120–131 (2004)CrossRefGoogle Scholar
  11. 11.
    Taniguchi, T., Sugeno, M.: Stabilization of nonlinear systems with piecewise bilinear models derived from fuzzy if-then rules with singletons. In: 2010 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–6. IEEE (2010)Google Scholar
  12. 12.
    Takagi, T., Sugeno, M.: Fuzzy identification of system and its applications to modelling and control. IEEE Trans. Syst., Man, and Cyber. 1, 5 (1985)Google Scholar
  13. 13.
    Tanaka, K., Wang, H.: Fuzzy control systems design and analysis: a linear matrix inequality approach. Wiley-Interscience (2001)Google Scholar
  14. 14.
    Vogt, M., Müller, N., Isermann, R.: On-line adaptation of grid-based look-up tables using a fast linear regression technique. Journal of Dynamic Systems, Measurement, and Control 126, 732 (2004)CrossRefGoogle Scholar
  15. 15.
    Sugeno, M., Hirano, I., Nakamura, S., Kotsu, S.: Development of an intelligent unmanned helicopter. In: Proceedings of 1995 IEEE International Conference on International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium, Fuzzy Systems, vol. 5, pp. 33–34. IEEE (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Luka Eciolaza
    • 1
  • Michio Sugeno
    • 1
  1. 1.European Centre for Soft ComputingMieresSpain

Personalised recommendations