Advertisement

Dynamic Quantification of Process Parameters in Viscose Production with Evolving Fuzzy Systems

  • Carlos Cernuda
  • Edwin Lughofer
  • Lisbeth Suppan
  • Thomas Röder
  • Roman Schmuck
  • Peter Hintenaus
  • Wolfgang Märzinger
  • Jürgen Kasberger
Part of the Communications in Computer and Information Science book series (CCIS, volume 297)

Abstract

In viscose production, it is important to monitor three process parameters as part of the spin-bath in order to assure a high quality of the final product: the concentrations of H 2 SO 4, Na 2 SO 4 and ZnSO 4. During on-line production these process parameters usually show a quite high dynamics depending on the fibre type that is produced. Thus, conventional chemometric models, kept fixed during the whole life-time of the on-line process, show a quite imprecise and unreliable behavior when predicting the concentrations of new on-line data. In this paper, we are demonstrating evolving chemometric models based on TS fuzzy systems architecture, which are able to adapt automatically to varying process dynamics by updating their inner structures and parameters in a single-pass incremental manner. Gradual forgetting mechanisms are necessary in order to out-date older learned relations and to account for more flexibility and spontaneity of the models. The results show that our dynamic approach is able to overcome the huge prediction errors produced by various state-of-the-art static chemometric models, which could be verified on data recorded on-line over a three months period.

Keywords

viscose production dynamic processes evolving chemometric models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Backer, S.D., Scheunders, P.: Texture segmentation by frequency-sensitive elliptical competitive learning. Image and Vision Computing 19(9-10), 639–648 (2001)CrossRefGoogle Scholar
  2. 2.
    Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive online analysis. Journal of Machine Learning Research 11, 1601–1604 (2010)Google Scholar
  3. 3.
    Brereton, R.: Chemometrics: Data Analysis for the Laboratory and Chemical Plant. John Wiley & Sons, Hoboken (2003)Google Scholar
  4. 4.
    Cernuda, C., Lughofer, E., Maerzinger, W., Kasberger, J.: NIR-based quantification of process parameters in polyetheracrylat (PEA) production using flexible non-linear fuzzy systems. Chemometrics and Intelligent Laboratory Systems 109(1), 22–33 (2011)CrossRefGoogle Scholar
  5. 5.
    Cleveland, W., Devlin, S.: Locally weighted regression: An approach to regression analysis by local fitting. Journal of the American Statistical Association 84(403), 596–610 (1988)CrossRefGoogle Scholar
  6. 6.
    Draper, N., Smith, H.: Applied regression analysis. Wiley Interscience, Hoboken (1998)zbMATHGoogle Scholar
  7. 7.
    Haavisto, O., Hyotyniemi, H.: Recursive multimodel partial least squares estimation of mineral flotation slurry contents using optical reflectance spectra. Analytica Chimica Acta 642, 102–109 (2009)CrossRefGoogle Scholar
  8. 8.
    Haenlein, M., Kaplan, A.: A beginner’s guide to partial least squares (PLS) analysis. Understanding Statistics 3(4), 283–297 (2004)CrossRefGoogle Scholar
  9. 9.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edn. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  10. 10.
    Hastie, T., Tibshirani, R., Friedman, J.: Regularized paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1) (2010)Google Scholar
  11. 11.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall (1999)Google Scholar
  12. 12.
    Jolliffe, I.: Principal Component Analysis. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  13. 13.
    Ljung, L.: System Identification: Theory for the User. Prentice Hall PTR, Prentic Hall Inc., Upper Saddle River, New Jersey (1999)Google Scholar
  14. 14.
    Lughofer, E.: Extensions of vector quantization for incremental clustering. Pattern Recognition 41(3), 995–1011 (2008)zbMATHCrossRefGoogle Scholar
  15. 15.
    Lughofer, E.: FLEXFIS: A robust incremental learning approach for evolving TS fuzzy models. IEEE Transactions on Fuzzy Systems 16(6), 1393–1410 (2008)CrossRefGoogle Scholar
  16. 16.
    Lughofer, E.: Evolving Fuzzy Systems — Methodologies, Advanced Concepts and Applications. Springer, Heidelberg (2011)zbMATHCrossRefGoogle Scholar
  17. 17.
    Lughofer, E., Bouchot, J.L., Shaker, A.: On-line elimination of local redundancies in evolving fuzzy systems. Evolving Systems 2(3), 165–187 (2011)CrossRefGoogle Scholar
  18. 18.
    Næs, T., Martens, H.: Principal component regression in NIR analysis: Viewpoints, background details and selection of components. Journal of Chemometrics 2(2), 155–167 (1988)CrossRefGoogle Scholar
  19. 19.
    Pomerantsev, A.: Acceptance areas for multivariate classification derived by projection methods. Journal of Chemometrics 22, 601–609 (2008)CrossRefGoogle Scholar
  20. 20.
    Shao, X., Bian, X., Cai, W.: An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis. Analytica Chimica Acta 666(1-2), 32–37 (2010)CrossRefGoogle Scholar
  21. 21.
    Varmuza, K., Filzmoser, P.: Introduction to Multivariate Statistical Analysis in Chemometrics. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  22. 22.
    Wang, L., Mendel, J.: Fuzzy basis functions, universal approximation and orthogonal least-squares learning. IEEE Transactions on Neural Networks 3(5), 807–814 (1992)CrossRefGoogle Scholar
  23. 23.
    Yager, R.R.: A model of participatory learning. IEEE Transactions on Systems, Man and Cybernetics 20(5), 1229–1234 (1990)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Carlos Cernuda
    • 1
  • Edwin Lughofer
    • 1
  • Lisbeth Suppan
    • 2
  • Thomas Röder
    • 3
  • Roman Schmuck
    • 3
  • Peter Hintenaus
    • 4
  • Wolfgang Märzinger
    • 5
  • Jürgen Kasberger
    • 6
  1. 1.Department of Knowledge-based Mathematical SystemsUniversity of LinzAustria
  2. 2.Kompetenzzentrum Holz GmbHLinzAustria
  3. 3.Lenzing AGLenzingAustria
  4. 4.Software Research CenterParis Lodron UniversitySalzburgAustria
  5. 5.i-RED Infrarot Systeme GmbHLinzAustria
  6. 6.Recendt GmbHLinzAustria

Personalised recommendations