Skip to main content

On Multilevel Quadrature for Elliptic Stochastic Partial Differential Equations

  • Conference paper
  • First Online:
Book cover Sparse Grids and Applications

Abstract

In this article, we show that the multilevel Monte Carlo method for elliptic stochastic partial differential equations is a sparse grid approximation. By using this interpretation, the method can straightforwardly be generalized to any given quadrature rule for high dimensional integrals like the quasi Monte Carlo method or the polynomial chaos approach. Besides the multilevel quadrature for approximating the solution’s expectation, a simple and efficient modification of the approach is proposed to compute the stochastic solution’s variance. Numerical results are provided to demonstrate and quantify the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This holds under the assumptions that the dimensions of V j (1) and V j (2) scale like geometric sequences.

  2. 2.

    Error estimates in respectively L 2(D) and L 1(D) are derived by straightforward modifications, yielding the convergence rate 4 − . Then, the error analysis of the multilevel quadrature can be performed with respect to these norms, provided that the precision of the quadrature (10) is also chosen as \({\epsilon }_{\mathcal{l}} = {4}^{-\mathcal{l}}\).

  3. 3.

    There holds the identity \({V }_{j}^{(1)}\,=\,{P}_{j}\left ({L}_{\rho }^{2}\left (\square ; {H}_{0}^{1}(D)\right )\right )\) where \({P}_{j}\,:\,{L}_{\rho }^{2}\left (\square ; {H}_{0}^{1}(D)\right ) \rightarrow {L}_{\rho }^{2}\left (\square ; {\mathcal{S}}_{j}^{p}(D)\right )\) is the Galerkin projection with respect to the bilinear form \(A : {L}_{\rho }^{2}\left (\square ; {H}_{0}^{1}(D)\right ) \times {L}_{\rho }^{2}\left (\square ; {H}_{0}^{1}(D)\right ) \rightarrow \mathbb{R}\) given by

    $$A(v,w) :={ \int }_{\square }{\int }_{D}\alpha (\mathbf{x},\mathbf{y}){\nabla }_{\mathbf{x}}v(\mathbf{x},\mathbf{y}){\nabla }_{\mathbf{x}}w(\mathbf{x},\mathbf{y})\rho (\mathbf{y})\text{ d}\mathbf{x}\text{ d}\mathbf{y}.$$

    This bilinear form stems from the weak formulation of the parametric diffusion problem (6) in the Bochner space \({L}_{\rho }^{2}\left (\square ; {H}_{0}^{1}(D)\right )\). The equivalence of this weak definition to the pointwise definition (15) follows immediately from the analyticity of the solutions to (6) in the parameter y.

References

  1. A. Barth, C. Schwab, and N. Zollinger. Multi-level monte carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math., 119(1):123–161, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  2. H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numer., 13:147–269, 2004.

    Article  MathSciNet  Google Scholar 

  3. E. W. Cheney and W. A. Light. Approximation Theory in Tensor Product Spaces. Springer, Berlin, 1980.

    Google Scholar 

  4. A. Cohen, R. DeVore, and C. Schwab. Convergence rates of best N-term Galerkin approximations for a class of elliptic sPDEs. Found. Comput. Math., 10:615–646, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Diestel and J. J. Uhl, Jr. Vector Measures. American Mathematical Society, Providence, 1979.

    Google Scholar 

  6. P. Frauenfelder, C. Schwab, and R. Todor. Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Engrg., 194(2–5):205–228, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Gerstner and M. Griebel. Numerical integration using sparse grids. Numer. Algorithms, 18:209–232, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Gerstner and S. Heinz. Dimension- and time-adaptive multilevel Monte Carlo methods. In J. Garcke and M. Griebel, editors, Sparse Grids and Applications, LNCSE. Springer, 107–120, 2012.

    Google Scholar 

  9. R. Ghanem and P. Spanos. Stochastic finite elements: a spectral approach. Springer-Verlag, New York, 1991.

    Book  MATH  Google Scholar 

  10. M. Giles. Multilevel Monte Carlo path simulation. Operations Research, 56(3):607–617, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Giles and B. Waterhouse. Multilevel quasi-Monte Carlo path simulation. Radon Series Comp. Appl. Math., 8:1–18, 2009.

    Article  MathSciNet  Google Scholar 

  12. M. Griebel and H. Harbrecht. On the construction of sparse tensor product spaces. Preprint 497, Berichtsreihe des SFB 611, Universität Bonn, 2011. (to appear in Math. Comput.).

    Google Scholar 

  13. H. Harbrecht, M. Peters, and R. Schneider. On the low-rank approximation by the pivoted Cholesky decomposition. Appl. Numer. Math., 62(4):428–440, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Hegland. Adaptive sparse grids. ANZIAM J., 44:C335–C353, 2002.

    MathSciNet  Google Scholar 

  15. S. Heinrich. The multilevel method of dependent tests. In Advances in stochastic simulation methods (St. Petersburg, 1998), Stat. Ind. Technol., pages 47–61. Birkhäuser Boston, Boston, MA, 2000.

    Google Scholar 

  16. S. Heinrich. Multilevel Monte Carlo methods. In Lect. Notes in Large Scale Scientific Computing, pages 58–67, London, 2001. Springer-Verlag.

    Google Scholar 

  17. M. Loève. Probability theory. I+I​I, volume 45 of Graduate Texts in Mathematics. Springer-Verlag, New York, 4th edition, 1977.

    Google Scholar 

  18. H. Niederreiter. Random number generation and quasi-Monte Carlo methods. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1992.

    Book  MATH  Google Scholar 

  19. P. Protter. Stochastic integration and differential equations: a new approach. Springer, Berlin, 3rd edition, 1995.

    Google Scholar 

  20. C. Schwab and R. Todor. Karhunen-Loève approximation of random fields by generalized fast multipole methods. J. Comput. Phys., 217:100–122, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Todor and C. Schwab. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J. Numer. Anal., 27(2):232–261, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Zenger. Sparse grids. In W. Hackbusch, editor, Parallel Algorithms for Partial Differential Equations, volume 31 of Notes on Numerical Fluid Mechanics, pages 241–251, Braunschweig/Wiesbaden, 1991. Vieweg-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Harbrecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harbrecht, H., Peters, M., Siebenmorgen, M. (2012). On Multilevel Quadrature for Elliptic Stochastic Partial Differential Equations. In: Garcke, J., Griebel, M. (eds) Sparse Grids and Applications. Lecture Notes in Computational Science and Engineering, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31703-3_8

Download citation

Publish with us

Policies and ethics