Skip to main content

Tribology in Hot Rolling of Steel Strip

  • Chapter
  • First Online:
Tribology in Manufacturing Technology

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

Contact friction is of crucial importance for accurate simulation, optimum design and control of industrial rolling processes. It affects the shape, profile, dimensional accuracy and surface quality of hot rolled strips. This chapter focuses on the tribology of hot strip rolling of plain carbon steel and stainless steel, which is significantly affected by oxide scales. The fundamental of oxidation of pure iron, plain carbon steel and stainless steel, and the formation of oxide scales in hot rolling process have been discussed. The morphology of the oxide scales and their deformation behaviours that depend on oxide scale thickness, constitution and the rolling parameters have been disclosed. Surface roughness of oxide scales and the tribological effect of oxide scales in hot strip rolling have been studied. A multi oxide scale layers simulation has been established to study the deformation and fracture of oxide scales taking into account the effect of surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Torresa M, Colas R (2000) J Mater Process Technol 105:258–263

    Article  Google Scholar 

  2. Luong LH, Heijkoop T (1981) Wear 71:93–102

    Article  CAS  Google Scholar 

  3. Li YH, Krzyzanowski M, Beynon JH, Sellars CM (2000) Acta Metall Sin 13:359–368

    CAS  Google Scholar 

  4. Beynon JH, Li YH, Krzyzanowski M, Sellars CM (2000) In: Pietrzk, Kusiak J, Majta J, Hartley P and Pillinger I (eds) Metal forming, Balkema, Rotterma, pp 3–10

    Google Scholar 

  5. Krzyzanowski M, Beynon JH (2000) Modell Simul Mater Sci Eng 8:927–945

    Article  Google Scholar 

  6. Krzyzanowski M, Beynon JH, Sellars CM (2000) Metall Mater Trans 31B:1483–1490

    CAS  Google Scholar 

  7. Krzyzanowski M, Beynon JH (1999) Steel Res 70:22–27

    CAS  Google Scholar 

  8. Chen RY, Yuen WYD, Mak T (2001) In Proceedings of the 43rd MWSP conference, ISS, vol XXXIX, pp 287–299

    Google Scholar 

  9. Yu Y, Lenard JG (2002) J Mater Process Technol 121:60–68

    Article  CAS  Google Scholar 

  10. Li YH, Sellars CM (1996) In: Beynon JH, Ingham P, Teichert H and Waterson K (eds) Proceedings of the 2nd international conference on modelling of metal rolling processes, London, pp 192–206

    Google Scholar 

  11. Munther PA, Lenard JG (1999) J Mater Process Technol 88:105–113

    Article  Google Scholar 

  12. Krzyzanowski M, Beynon JH (2006) ISIJ Int 46:1533–1547

    Article  CAS  Google Scholar 

  13. Chen RY, Yuen WYD (2003) Oxid Met 59:433–468

    Article  CAS  Google Scholar 

  14. Ajersch F (1993) In Proceedings of the 34th MWSP conference, ISS-AIME 30, pp 419–437

    Google Scholar 

  15. Paidassi J (1958) Acta Metall 6:184–194

    Article  CAS  Google Scholar 

  16. Bertrand N, Desgranges C, Gauvain D, Monceau D, Poquillon D (2004) Mater Sci Forum 461–464:591–598

    Article  Google Scholar 

  17. Singh Raman RK, Gleeson, Young DJ (1996). In Proceedings of the 13th international conference on corrosion, Australia, paper 297

    Google Scholar 

  18. Abuluwefa H, Guthrie RIL, Ajersch F (1996) Oxid Met 46:423

    Article  CAS  Google Scholar 

  19. Chen RY, Yuen WYD (2002) Oxid Met 57:53–79

    Article  CAS  Google Scholar 

  20. Evans HE (1988) Mater Sci Technol 4:1089

    Article  CAS  Google Scholar 

  21. Mark R (2001) Wire industry, 68, p 503

    Google Scholar 

  22. Capitan MJ, Lefebvre S, Traverse A, Paul A, Odriozolac JA (1998) J Mater Chem 8:2293–2298

    Article  CAS  Google Scholar 

  23. Riffard F, Buscail H, Caudron E, Cueff R, Issartel C, Perrier S (2004) Surf Eng 20:440–446

    Article  CAS  Google Scholar 

  24. Riffard F, Buscail H, Caudron E, Cueff R, Issartel C, Perrier S (2002) Mater Charact 49:55–65

    Article  CAS  Google Scholar 

  25. Riffard F, Buscail H, Caudron E, Cueff R (2001) In: Sudarshan TS, Jeandin M (eds) Surface modification technologies XIV, ASM international, materials park. Ohio and IOM Communications Ltd., UK, pp 526–529

    Google Scholar 

  26. Jonsson T, Canovic S, Liu F, Asteman H, Svensson J-E, Johansson L-G, Halvarsson M (2005) Materials at high temperature 22:231–243

    Article  CAS  Google Scholar 

  27. Asteman H, Svensson J-E, Johansson L-G (2002) Oxid Met 57:193–216

    Article  CAS  Google Scholar 

  28. Asteman H, Svensson J-E, Johansson L-G, Norell M (1999) Oxid Met 52:95–111

    Article  CAS  Google Scholar 

  29. Asteman H, Svensson J-E, Norell M, Johansson L-G (2000) Oxid Met 54:11–26

    Article  CAS  Google Scholar 

  30. Asteman H, Segerdahl K, Svensson JE, Johansson LG (2001) Mater Sci Forum 369–372:277–286

    Article  Google Scholar 

  31. Tang JE (2001) Micron 32:799–805

    Article  CAS  Google Scholar 

  32. Honda Katsuya, Maruyama Toshio, Atake Tooru, Saito Yasutoshi (1992) Oxid Met 38:347–363

    Article  CAS  Google Scholar 

  33. Ishida Toshihisa, Harayama Yasuo, Yaguchi Sinnosuke (1986) J Nucl Mater 140:74–84

    Article  CAS  Google Scholar 

  34. Cheng Shen-Yuan, Kuan Sheng-Lih, Tsai Wen-Ta (2006) Corros Sci 48:634–649

    Article  CAS  Google Scholar 

  35. Amy S, Vangeli P (2001) In: EUROCORR 2001 (The European Corrosion Congress), Lake Garda, Italy, 2001, 13-25

    Google Scholar 

  36. Huntz AM, Reckmanna A, Haut C, Severac C, Herbst M, Resende FCT, Sabioni ACS (2007) Mater Sci Eng, A 447:266–276

    Article  Google Scholar 

  37. Lee YD, Lee YH, Lee JS, Kim JK (1991) In Proceedings of the international conference on stainless steels. Chiba, ISIJ, pp 952–958

    Google Scholar 

  38. Sun WH, Tieu AK, Jiang ZY, Zhu H, Lu C (2003) J Mater Process Technol 140:76–83

    Article  CAS  Google Scholar 

  39. Sun WH, Tieu AK, Jiang ZY, Zhu H, Lu C (2004) J Mater Process Technol 155–156:1300–1306

    Article  Google Scholar 

  40. Jiang ZY, Tieu AK, Sun WH, Tang JN, Wei DB (2006) Mater Sci Eng A 435–436:434–438

    Google Scholar 

  41. Perez FJ, Cristobal MJ, Arnau G, Hierro MP, Saura JJ (2001) Oxid Met 55:105–118

    Article  CAS  Google Scholar 

  42. Echsler H, Ito S, Schutze M (2003) Oxid Met 60:241–269

    Article  CAS  Google Scholar 

  43. Chen RY, Yuen WYD (2000) Oxid Met 53:539–560

    Article  CAS  Google Scholar 

  44. Chen RY, Yuen WYD (2001) Oxid Met 56:89–118

    Article  CAS  Google Scholar 

  45. Fernando LA, Zaremski DR (1988) Metall Trans A 19:1083–1100

    Article  Google Scholar 

  46. Lundberg S-E, Gustafsson T (1994) J Mater Process Technol 42:239–291

    Article  Google Scholar 

  47. Krzyzanowski M, Beynon JH (2002) J Mater Process Technol 125–126:398–404

    Article  Google Scholar 

  48. Hidaka Y, Anraku T, Otsuka N (2001) Mater Sci Forum 369–372:555–562

    Article  Google Scholar 

  49. Riedel H (1982) Mater Sci 16:569–574

    Google Scholar 

  50. Hancook P, Nicholls JR (1988) Mater Sci Technol 4:398–406

    Article  Google Scholar 

  51. Schutze M (2005) Materials at high temperature 22:147–154

    Article  Google Scholar 

  52. Fletcher JD, Beynon JH (1996) In Proceedings of the second international conference on modelling of metal rolling processes, London, 202–212

    Google Scholar 

  53. Li YH, Sellars CM (1996) Ironmaking steelmaking 23:58–61

    Google Scholar 

  54. Li YH, Sellars CM (1999) Advanced technology of plasticity. In Proceedings of the 6th ICTP, vol III, 1973–1978

    Google Scholar 

  55. Jarl M (1993) In Proceedings of the first international conference on modelling of metal rolling processes. UK, London, pp 614–628

    Google Scholar 

  56. Sun WH, Tieu AK, Jiang ZY, Lu C (2004) J Mater Process Technol 155–156:1307–1312

    Article  Google Scholar 

  57. Sun WH, Tieu AK, Jiang ZY, Zhu H (2004) Key Eng Mater 274–276:511–516

    Article  Google Scholar 

  58. Tang J, Tieu AK, Jiang ZY (2006) J Mater Process Technol 177:126–129

    Article  CAS  Google Scholar 

  59. Tang J, Tieu AK, Jiang ZY (2004) Key Eng Mater 274–276:499–504

    Article  Google Scholar 

  60. Tan KS, Krzyzanowski M, Beynon JH (2001) Steel Res 72:250–257

    CAS  Google Scholar 

  61. Krzyzanowski M, Beynon JH (1999) Mater Sci Technol 15:1191–1198

    CAS  Google Scholar 

  62. Krzyzanowski M, Beynon JH (1999) In Proceedings of the third international conference on modelling of metal rolling processes, London, 360–369

    Google Scholar 

  63. Beynon JH, Krzyzanowski M (2005) Mater Forum 29:39–46

    CAS  Google Scholar 

  64. Krzyzanowsky M, Beynon JH, Frolish MF, Clowe S (2007) Mater Sci Forum 539–543:2461–2466

    Article  Google Scholar 

  65. Wei DB, Huang JX, Zhang AW, Jiang ZY, Tieu AK, Shi X, Jiao SH (2010) Friction, surface roughness and oxide scale deformation during hot rolling of stainless steels. In proceedings of the 10th international conference on steel rolling, Beijing, China, 15–17

    Google Scholar 

  66. Wei DB, Huang JX, Zhang AW, Jiang ZY, Tieu AK, Shi X, Jiao SH (2009) Int J Surf Sci Eng 3(5–6):459–470

    Article  CAS  Google Scholar 

  67. Rudkins NT, Hartley P, Pillinger I, Petty D (1996) J Mater Process Technol 60:349–353

    Article  Google Scholar 

  68. Das S, Palmiere EJ, Howard IC (2001) Mater Sci Technol 17:864–873

    Article  CAS  Google Scholar 

  69. Hum B, Colquhoun HW, Lenard JG (1996) J Mater Process Technol 60:331–338

    Article  Google Scholar 

  70. Lagergren J (1997) J Mater Process Technol 70:207–214

    Article  Google Scholar 

  71. Lundberg S-E (2004) Scandinavian J Metall 33:129-145

    Google Scholar 

  72. Li YH, Beynon JH, Sellars CM (1999) Advanced technology of plasticity. In Proceedings of the 6th ICTP, vol III, 2023–2028

    Google Scholar 

  73. Heshmat H, Godet M, Berthier Y (1995) Lubr Eng 51:557–564

    CAS  Google Scholar 

  74. A.K.E.H.A. El-Kalay, Sparling LGM (1968) J Iron and Steel Inst 43:152-168

    Google Scholar 

  75. Fedorciuc-Onisa C, Farrugia DCJ (2003) In: Brucato V (eds) The 6th ESAFORM conference on material forming, 763–766

    Google Scholar 

  76. Vergne C, Boher C, Levaillant C, Gras R (2001) Wear 250:322–333

    Article  Google Scholar 

  77. Alexander JM, Brewer RC, Rowe GW (1987) Manufacturing technology, Vol 2: engineering processes. Ellis Horwood Ltd. Published, West Sussex

    Google Scholar 

  78. Wei DB, Huang JX, Zhang AW, Jiang ZY, Tieu AK, Wu F, Shi X, Jiao SH, Chen L (2010) Steel Res Int 81(9):102–105

    Google Scholar 

  79. Wei DB, Huang JX, Zhang AW, Jiang ZY, Tieu AK, Shi X, Jiao SH (2011) Wear 271(9–10):2417–2425

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Y. Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wei, D.B., Jiang, Z.Y. (2012). Tribology in Hot Rolling of Steel Strip. In: Davim, J. (eds) Tribology in Manufacturing Technology. Materials Forming, Machining and Tribology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31683-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31683-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31682-1

  • Online ISBN: 978-3-642-31683-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics