Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 440))

Abstract

Planning belongs to fundamental AI domains. Examples of planning applications are manufacturing, production planning, logistics and agentics. Over the decades planning techniques were improved and now they are able to capable real environment problems in the presence of uncertain and incomplete information. This article introduces the notion of so called classical planning, indicating connected with this computational complexity problems and possible ways of treating uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Backstrom, C.: Computational Aspects of Reordering Plans. Journal of Artificial Intelligence Research 9, 99–137 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Baral, C., Kreinovich, V., Trejo, R.: Computational complexity of planning and approximate planning in presence of incompleteness. In: Proc. 16th International Joint Conference on Artificial Intelligence, IJCAI 1999 (1999)

    Google Scholar 

  3. Barret, A., Weld, D.S.: Partial-Order Planning: Evaluating Possible Efficiency Gains. Artificial Intelligence 67, 71–112 (1994)

    Article  MathSciNet  Google Scholar 

  4. Blythe, J.: An Overview of Planning Under Uncertainty. Pre-print from AI Magazine 20(2), 37–54 (1999)

    Google Scholar 

  5. Blythe, J.: Planning Under Uncertainty in Dynamic Domains. Ph.D. Dissertation. Carnegie Mellon University Computer Science Department

    Google Scholar 

  6. Bylander, T.: The Computational Complexity of Propositional STRIPS Planning. Artificial Intelligence 69, 165–204 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bylander, T.: A probabilistic analysis of propositional STRIPS planning. Artificial Intelligence 81, 241–271 (1996)

    Article  MathSciNet  Google Scholar 

  8. Bylander, T.: A linear programming heuristic for optimal planning. In: Proceedings of the 14th National Conference on Artificial Intelligence, pp. 694–699 (1997)

    Google Scholar 

  9. Cocosco, C.A.: A review of STRIPS: A new approach to the application of theorem proving to problem solving by R.E. Fikes, N.J. Nillson, 1971. For 304-526B Artificial Intelligence 4 (1998)

    Google Scholar 

  10. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Wprowadzenie do algorytmĂłw. WNT, Warszawa (1997)

    Google Scholar 

  11. Gerevini, A., Schubert, L.: Accelerating Partial Orders Planners: Some Techniques for Effective Search Control and Pruning. Journal of Artificial Intelligence Research 5, 95–137 (1996)

    Google Scholar 

  12. Gupta, M.M.: Intelligence, uncertainty and information. In: Machine Intelligence and Pattern Recognition, Analysis and Management of Uncertainty: Theory and Applications, vol.13. North-Holland (1992)

    Google Scholar 

  13. Gupta, N., Nau, D.S.: On the complexity of Blocks - World planning. Artificial Intelligence 56(2-3), 223–254 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Haddawy, P., Suwandi, M.: Decision-Theoretic Refinement Planning using Inheritance Abstraction. In: Hammond, K. (ed.) Proc. Second International Conference on Artificial Intelligence Planning Systems. University of Chicago, AAAI Press, Illinois

    Google Scholar 

  15. Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty, and Information. Prentice-Hall International, Inc., USA (1988)

    MATH  Google Scholar 

  16. Koehler, J., Hoffmann, J.: On Reasonable and Forced Goal Orderings and their Use in an Agenda-Driven Planning Algorithm. Journal of Artificial Intelligence Research 12, 339–386 (2000)

    MathSciNet  Google Scholar 

  17. Kushmerick, N., Hanks, S., Weld, D.: An algorithm for probabilistic least-commitment planning. In: Proc. Twelfth National Conference on Artificial Intelligence, pp. 1073–1078. AAAI Press (1994)

    Google Scholar 

  18. Leckie, C., Zukerman, I.: Inductive Learning of Search Control Rules for Planning. Artificial Intelligence 101, 63–98 (1998)

    Article  MATH  Google Scholar 

  19. Long, D., Fox, M.: Efficient Implementation of the Plan Graph in STAN. Journal of Artificial Intelligence Research 10, 87–115 (1999)

    MATH  Google Scholar 

  20. McAllester, D.: Nonlinear Strips Planning. Lecture notes for Massachusetts Institute of Technology’s course: 6.824, Artificial Intelligence (1992)

    Google Scholar 

  21. Nillson, N.J., Fikes, R.E.: STRIPS: A new approach to the application of theorem proving to problem solving. Technical Note 43, SRI Project 8259, Artificial Intelligence Group, Stanford Research Institute (October 1970)

    Google Scholar 

  22. Nillson, N.J.: Principles of Artificial Intelligence. Toga Publishing Company, Palo Alto (1980)

    Google Scholar 

  23. Papadimitriou, C.: Computational Complexity. Addison Wesley (1994)

    Google Scholar 

  24. Poole, D., Mackworth, A., Goebel, R.: Computational Intelligence: A Logical Approach. Oxford University Press (1998)

    Google Scholar 

  25. Rintanen, J.: Constructing Conditional Plans by a Theorem-Prover. Journal of Artificial Intelligence Research 10, 323–352 (1999)

    MATH  Google Scholar 

  26. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall Series in Artificial Intelligence (2003)

    Google Scholar 

  27. Stanford Research Institute: Shakey the robot, http://www.ai.sri.com/shakey/

  28. Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink, E., Blythe, J.: Integrating planning and learning: The prodigy architecture. Journal of Experimental and Theoretical AI 7, 81–120 (1995)

    Article  MATH  Google Scholar 

  29. Weld, D.S.: Recent Advantages in AI Planning. Technical Report UW-CSE-98-10-01; also AI Magazine (1999)

    Google Scholar 

  30. Weld, D.S., Anderson, C.R., Smith, D.E.: Extending Graphplan to Handle Uncertainty & Sensing Actions. In: Proc. 15th National Conf. on AI, pp. 897–904 (1998)

    Google Scholar 

  31. Wikipedida, a free encyclopedia, http://en.wikipedia.org (Cited July 18, 2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam GaƂuszka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

GaƂuszka, A., Pacholczyk, M., Bereska, D., Skrzypczyk, K. (2013). Planning as Artificial Intelligence Problem - Short Introduction and Overview. In: Nawrat, A., Simek, K., ƚwierniak, A. (eds) Advanced Technologies for Intelligent Systems of National Border Security. Studies in Computational Intelligence, vol 440. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31665-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31665-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31664-7

  • Online ISBN: 978-3-642-31665-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics