Skip to main content

Improving the Berlekamp Algorithm for Binomials x n − a

  • Conference paper
Book cover Arithmetic of Finite Fields (WAIFI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7369))

Included in the following conference series:

  • 986 Accesses

Abstract

In this paper, we describe an improvement of the Berlekamp algorithm, a method for factoring univariate polynomials over finite fields, for binomials x n − a over finite fields \(\mathbb{F}_{q}\). More precisely, we give a deterministic algorithm for solving the equation \(h(x)^{q} \equiv h(x) \ ({\rm mod}\ x^{n} -a)\) directly without applying the sweeping-out method to the corresponding coefficient matrix. We show that the factorization of binomials using the proposed method is performed in \(O \, \tilde{}\, (n \log q)\) operations in \(\mathbb{F}_{q}\) if we apply a probabilistic version of the Berlekamp algorithm after the first step in which we propose an improvement. Our method is asymptotically faster than known methods in certain areas of q, n and as fast as them in other areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L., Menders, K., Miller, G.: On taking roots in finite fields. In: Proc. 18th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 175–178 (1977)

    Google Scholar 

  2. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  3. Berlekamp, E.R.: Factoring polynomials over finite fields. Bell System Technical Journal 46, 1853–1859 (1967)

    MathSciNet  Google Scholar 

  4. Berlekamp, E.R.: Factoring polynomials over large finite fields. Math. Comp. 24, 713–735 (1970)

    Article  MathSciNet  Google Scholar 

  5. Camion, P.: Improving an algorithm for factoring polynomials over a finite field and constructing large irreducible polynomials. IEEE Transactions on Information Theory 29(3), 378–385 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cantor, D.G., Zassenhaus, H.: A new algorithm for factoring polynomials over finite fields. Math. Comp. 36, 587–592 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary algebras. Acta Inform. 28, 693–701 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9, 251–280 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. von zur Gathen, J., Shoup, V.: Computing Frobenius maps and factoring polynomials. Comput. Complexity 2, 187–224 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn., Cambridge (2003)

    Google Scholar 

  11. Geddes, K., Czapor, S., Labahn, G.: Algorithms for Computer Algebra. Kluwer Academic Publishers (1992)

    Google Scholar 

  12. Kaltofen, E., Lobo, A.: Factoring high-degree polynomials by black box Berlekamp algorithm. In: Proceedings of ISSAC 1994, pp. 90–98. ACM Press (1994)

    Google Scholar 

  13. Kaltofen, E., Shoup, V.: Subquadratic-time factoring of polynomials over finite fields. Math. Comp. 67, 1179–1197 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lidl, R., Niederreiter, H.: Finite Fields. Addison-Wesley (1983)

    Google Scholar 

  15. McEliece, R.J.: Factorization of polynomials over finite fields. Math. Comp. 23, 861–867 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  16. Prange, E.: An algorithm for factoring X n − 1 over a finite field, Technical Report AFCRC-TN-59-775, Air Force Cambridge Research Center, Bedford, MA (1956)

    Google Scholar 

  17. Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7, 281–292 (1971)

    Article  MATH  Google Scholar 

  18. Schönhage, A.: Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Inform. 7, 395–398 (1977)

    Article  MATH  Google Scholar 

  19. Schwarz, Š.: On the reducibility of binomial congruences and on the bound of the least integer belonging to given exponent mod p. Časopis pro Pěstování Matematiky 74, 1–16 (1949), http://dml.cz/dmlcz/109143

    Google Scholar 

  20. Shoup, V.: On the deterministic complexity of factoring polynomials over finite fields. Information Processing Letters 33, 261–267 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sze, T.W.: On solving univariate polynomial equations over finite fields and some related problem, preprint, http://people.apache.org/~szetszwo/umd/papers/poly.pdf

  22. Wiedemann, D.H.: Solving sparse linear equations over finite fields. IEEE Transactions on Information Theory 32, 54–62 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harasawa, R., Sueyoshi, Y., Kudo, A. (2012). Improving the Berlekamp Algorithm for Binomials x n − a . In: Özbudak, F., Rodríguez-Henríquez, F. (eds) Arithmetic of Finite Fields. WAIFI 2012. Lecture Notes in Computer Science, vol 7369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31662-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31662-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31661-6

  • Online ISBN: 978-3-642-31662-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics