Advertisement

Autonomic Cooperative Networking for Vehicular Communications

  • Michał Wódczak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7363)

Abstract

As vehicular systems are expected to become the key element of the global networking ecosystem, it is crucial to ensure that the relevant technologies are included in their development from the very outset. A distinctive feature of vehicular networks is their envisaged high complexity in terms of network composition. Therefore, certain dose of automation is required for the purposes of guaranteeing smooth and robust system operation. First, it is expected that there will be a need for the vehicles to express capabilities of autonomic configuration in order to address the issues of rapid topology changes and distributed nature of the network. Second, a very relevant question of self-management needs to be answered so it is possible to understand how network nodes, i.e. vehicles, can express cooperative behaviors, manifested through, for example, the ability to perform autonomic cooperative communications and routing.

Keywords

cooperative communications autonomic system design vehicular networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alamouti, S.: A Simple Transmit Diversity Technique for Wireless Communications. IEEE Journal on Selected Areas in Communications 16(8), 1451–1458 (1998)CrossRefGoogle Scholar
  2. 2.
    Liakopoulos, A., Zafeiropoulos, A., Polyrakis, A., Grammatikou, M., Gonzlez, J.M., Wódczak, M., Chaparadza, R.: Monitoring Issues for Autonomic Networks: The EFIPSANS Vision. In: European Workshop on Mechanisms for the Future Internet (2008)Google Scholar
  3. 3.
    Chaparadza, R., Ciavaglia, L., Wódczak, M., Chen, C.-C., Lee, B.A., Liakopoulos, A., Zafeiropoulos, A., Mancini, E., Mulligan, U., Davy, A., Quinn, K., Radier, B., Alonistioti, N., Kousaridas, A., Demestichas, P., Tsagkaris, K., Vigoureux, M., Vreck, L., Wilson, M., Ladid, L.: ETSI Industry Specification Group on Autonomic Network Engineering for the Self-managing Future Internet (ETSI ISG AFI). In: Vossen, G., Long, D.D.E., Yu, J.X. (eds.) WISE 2009. LNCS, vol. 5802, pp. 61–62. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Chaparadza, R., Papavassiliou, S., Kastrinogiannis, T., Vigoureux, M., Dotaro, E., Davy, K.A., Quinn, M., Wódczak, M., Toth, A.: Creating a viable Evolution Path towards Self-Managing Future Internet via a Standardizable Reference Model for Autonomic Network Engineering. In: Tselentis, G., Domingue, J., Galis, A., Gavras, A., Hausheer, D., Krco, S., Lotz, V., Zahariadis, T. (eds.) Towards the Future Internet - A European Research Perspective. IOS Press (May 2009) ISBN: 978-1-60750-007-0Google Scholar
  5. 5.
    Clausen, T., Jacquet, P.: Optimised Link State Routing Protocol (OLSR). RFC 3626 (October 2003)Google Scholar
  6. 6.
    Dohler, M., Gkelias, A., Aghvami, H.: 2-Hop Distributed MIMO Communication System. IEE Electronics Letters 39(18) (June 2003)Google Scholar
  7. 7.
    Dohler, M., Gkelias, A., Aghvami, H.: A resource allocation strategy for distributed MIMO multi-hop communication systems. IEEE Communications Letters 8(2), 99–101 (2004)CrossRefGoogle Scholar
  8. 8.
    Dottling, M., Irmer, R., Kalliojarvi, K., Rouquette-Leveil, S.: System Model, Test Scenarios, and Performance Evaluation. In: Dottling, M., Mohr, W., Osseiran, A. (eds.) Radio Technologies and Concepts for IMT-Advanced. Wiley (December 2009) ISBN: 978-0-470-74763-6Google Scholar
  9. 9.
    Herhold, P., Zimmermann, E., Fettweis, G.: Cooperative multi-hop transmission in wireless networks. Computer Networks Journal 49(3), 299–324 (2005)zbMATHCrossRefGoogle Scholar
  10. 10.
    Laneman, J.N., Tse, D.N.C., Wornell, G.W.: Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory 50(12), 3062–3080 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Laneman, J.N., Wornell, G.W.: Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory 49(10), 2415–2425 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Li, J., Wódczak, M., Wu, X., Hsing, T.R.: Vehicular Networks and Applications - Challenges, Requirements and Service Opportunities. Academy Publisher Journal of Communications ( accepted for publication, 2012)Google Scholar
  13. 13.
    Li, J., Wódczak, M., Wu, X., Hsing, T.R.: Vehicular Networks and Applications: Challenges, Requirements and Service Opportunities. In: International Conference on Computing, Networking ans Communications (ICNC), Maui, Hawai, USA, January 30 -February 2 (2012)Google Scholar
  14. 14.
    Pabst, R., Walke, B., Schultz, D.C., Herhold, P., Yanikomeroglu, H., Mukherjee, S., Viswanathan, H., Lott, M., Zirwas, W., Dohler, M., Aghvami, H., Falconer, D., Fettweis, G.: Relay-Based Deployment Concepts for Wireless and Mobile Broadband Radio. IEEE Communications Magazine 42(9), 80–89 (2004)CrossRefGoogle Scholar
  15. 15.
    Qayyum, A., Viennot, L., Laouiti, A.: Multipoint Relaying for Flooding Broadcast Messages in Mobile Wireless Networks. In: 35th Annual Hawaii International Conference on System Sciences, HICSS (January 2002)Google Scholar
  16. 16.
    Tarokh, V., Jafarkhani, H., Calderbank, A.R.: Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory 45(5), 1456–1467 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Tarokh, V., Jafarkhani, H., Calderbank, A.R.: Space-time block coding for wireless communications: performance results. IEEE Journal on Selected Areas in Communications 17(3), 451–460 (1999)CrossRefGoogle Scholar
  18. 18.
    Tarokh, V., Seshadri, N., Calderbank, A.R.: Space-Time Codes for High Data Rate Wireless Communication: Performance Criterion and Code Construction. IEEE Transactions on Information Theory 44(2), 744–765 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Tarokh, V., Seshadri, N., Calderbank, A.R.: Space-Time Codes for High Data Rate Wireless Communication: Performance Criteria in the Presence of Channel Estimation Errors, Mobility, and Multiple Paths. IEEE Transactions on Communications 47(2), 199–207 (1999)zbMATHCrossRefGoogle Scholar
  20. 20.
    Wódczak, M.: On the Adaptive Approach to Antenna Selection and Space-Time Coding in Context of the Relay Based Mobile Ad-hoc Networks. In: XI National Symposium of Radio Science URSI, pp. 138–142 (April 2005)Google Scholar
  21. 21.
    Wódczak, M.: On Routing information Enhanced Algorithm for space-time coded Cooperative Transmission in wireless mobile networks. PhD thesis, Faculty of Electrical Engineering, Poznan University of Technology, Poland (September 2006)Google Scholar
  22. 22.
    Wódczak, M.: Extended REACT Routing information Enhanced Algorithm for Cooperative Transmission. IST Mobile and Wireless Communications Summit (June 2007)Google Scholar
  23. 23.
    Wódczak, M.: Autonomic Cooperative Networking. Springer, New York (2012)CrossRefGoogle Scholar
  24. 24.
    Zimmermann, E., Herhold, P., Fettweis, G.: On the Performance of Cooperative Relaying in Wireless Networks. European Transactions on Telecommunications 16(1), 5–16 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michał Wódczak
    • 1
  1. 1.EricssonPoznańPoland

Personalised recommendations