Capillary Machine-to-Machine Communications: The Road Ahead

  • Vojislav B. Mišić
  • Jelena Mišić
  • Xiaodong Lin
  • Dragan Nerandzic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7363)


Machine-to-Machine (M2M) communications are expected to include billions of smart devices in the next three to five years. However, existing communication standards are incapable of providing satisfactory performance for M2M traffic. In this paper, we outline some advances that will enable existing wireless personal area networks, in conjunction with existing cellular communication standards, to be adapted to the needs of M2M traffic.


machine-to-machine communications (M2M) capillary M2M wireless personal area networks wireless security 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Global Wireless MTC Market, 2nd edn. Berg Insight, Gothenburg (December 2009)Google Scholar
  2. 2.
    Service requirements for machine-type communications (MTC); stage 1, release 11. Technical Report TR 22.368 V11.0.1, 3GPP, Sophia Antipolis, France (February 2011)Google Scholar
  3. 3.
    Palat, S., Godin, P.: The LTE Network Architecture: A comprehensive tutorial. In: Sesia, S., Toufik, I., Baker, M. (eds.) The UMTS Long Term Evolution: From Theory to Practice. John Wiley & Sons (2009)Google Scholar
  4. 4.
    Andrews, J.G., Ghosh, A., Muhamed, R.: Fundamentals of WiMAX: Understanding Broadband Wireless Networking. Prentice-Hall (2007)Google Scholar
  5. 5.
    ETSI Workshop on Machine to Machine (M2M) Standardization, Sophia-Antipolis, France (June 2008),
  6. 6.
    1st ETSI TC Machine to Machine (M2M) Workshop, Sophia-Antipolis, France (October 2010),
  7. 7.
    Ortiz, J., Culler, D.: Exploring Diversity: Evaluating the Cost of Frequency Diversity in Communication and Routing. In: ACM SenSys, Raleigh, NC (November 2008)Google Scholar
  8. 8.
    Thonet, G., Allard-Jacquin, P., Colle, P.: ZigBee – WiFi Coexistence. white paper and test report, Schneider Electric, Grenoble, France (2008)Google Scholar
  9. 9.
    Mišić, J., Mišić, V.B.: Wireless personal area networks: performance, interconnections and security with IEEE 802.15.4. John Wiley & Sons, Chichester (2008)Google Scholar
  10. 10.
    IEEE 802.15 WPANTM Task Group 4e (TG4e) report at,
  11. 11.
    Castillo, J.: The survival of communications in ad hoc and M2M networks: The fundamentals design of architecture and radio technologies used for low-power communication NOMOHI devices. In: ITSim 2010, vol. 2, pp. 666–671 (2010)Google Scholar
  12. 12.
    Jung, K., Park, A., Lee, S.: Machine-Type-Communication (MTC) Device Grouping Algorithm for Congestion Avoidance of MTC Oriented LTE Network. In: Kim, T.-h., Stoica, A., Chang, R.-S. (eds.) SUComS 2010. CCIS, vol. 78, pp. 167–178. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Mišić, J., Mišić, V.B.: Performance modeling and analysis of Bluetooth networks: polling, scheduling, and traffic control. CRC Press, Boca Raton (2006)Google Scholar
  14. 14.
    Mišić, J., Mišić, V.B.: Characterization of idle periods in IEEE 802.11e networks. In: IEEE WCNC, Cancun (2011)Google Scholar
  15. 15.
    Cordeiro, C., Challapali, K., Birru, D., Sai Shankar, N.: IEEE 802.22: the first worldwide wireless standard based on cognitive radios. In: New Frontiers in Dynamic Spectrum Access Networks, DySPAN 2005, November 8-11, pp. 328–337 (2005)Google Scholar
  16. 16.
    Mišić, J., et al.: Maintaining Reliability through Activity Management in 802.15.4 Sensor Clusters. IEEE Transactions on Vehicular Technology 55(3), 779–788 (2006)CrossRefGoogle Scholar
  17. 17.
    Yaiparoj, S., et al.: On the economics of GPRS networks with Wi-Fi integration. European Journal of Operational Research 187(3), 1459–1475 (2008)zbMATHCrossRefGoogle Scholar
  18. 18.
    Sou, S.I., et al.: Modeling credit reservation procedure for UMTS online charging system. IEEE Transactions on Wireless Communications 6(11), 4129–4135 (2007)CrossRefGoogle Scholar
  19. 19.
    de Laat, C., Gross, G., Gommans, L.: Generic AAA architecture. Internet Engineering Task Force Network Working Group, Request for Comment (RFC) 2903 (2000)Google Scholar
  20. 20.
    Recommendation X.805 Security architecture for systems providing end to end communications. ITU-T Lead Study Group on Telecommunication Security (October 2003) Google Scholar
  21. 21.
    Feasibility Study on the Security Aspects of Remote Provisioning and Change of Subscription for M2M equipment; release 9. Technical Report TR 33.812 V1.4.0, 3GPP, Sophia Antipolis, France (June 2009)Google Scholar
  22. 22.
    Du, J., Chao, S.W.: A study of information security for M2M of IOT. In: ICACTE 2010, vol. 3, pp. 576–579 (August 2010)Google Scholar
  23. 23.
    Cha, I., et al.: Trust in M2M communication. IEEE Veh. Technol. Magazine 4(3), 69–75 (2009)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Bartoli, A., et al.: Secure lossless aggregation for smart grid MTC networks. In: SmartGridComm 2010, pp. 333–338 (2010)Google Scholar
  25. 25.
    Hartung, C., Balasalle, J., Han, R.: Node compromise in sensor networks: the need for secure systems. Technical Report CU-CS-990-05, Dept. of Comp Sci., Univ. of Colorado at Boulder (January 2005)Google Scholar
  26. 26.
    Lin, X.: CAT: Building Couples to Early Detect Node Compromise Attack in Wireless Sensor Networks. In: IEEE Global Communications Conference, GLOBECOM 2009, Honolulu, HI (2009)Google Scholar
  27. 27.
    Rabin, M.O.: Digital signature and public-key functions as intractable as factorization. MIT Laboratory of Computer Science. Technical Report. MIT/LCS/TR-212 (January 1979)Google Scholar
  28. 28.
    Gaubatz, G., Kaps, J.-P., Sunar, B.: Public Key Cryptography in Sensor Networks—Revisited. In: Castelluccia, C., Hartenstein, H., Paar, C., Westhoff, D. (eds.) ESAS 2004. LNCS, vol. 3313, pp. 2–18. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Peter, S., Piotrowski, K., Langendoerfer, P.: On concealed data aggregation for WSNs. In: IEEE Consumer Communications and Networking Conference, pp. 192–196 (2007)Google Scholar
  30. 30.
    Rivest, R.L., et al.: On data banks and privacy homomorphisms. In: DeMillo, R., Dobkin, D., Jones, A., Lipton, R. (eds.) Foundations of Secure Computation, pp. 169–180. Academic Press (1978)Google Scholar
  31. 31.
    Study on facilitating machine to machine communication in 3GPP systems, release 8. Technical Report TR 22.868 V8.0.0, 3GPP, Sophia Antipolis, France (March 2007)Google Scholar
  32. 32.
    Chaum, D.: Blind signatures for untraceable payments. In: Advances in Cryptology - Crypto 1982, pp. 199–203. Springer (1983)Google Scholar
  33. 33.
    Lamport, L.: Password authentication with insecure communication. Commun. of the ACM 24(11), 770–772 (1981)MathSciNetCrossRefGoogle Scholar
  34. 34.
    EXALTED (EXpAnding LTE for Devices), Integrated Project of the European Union’s Seventh Framework Programme,

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vojislav B. Mišić
    • 1
  • Jelena Mišić
    • 1
  • Xiaodong Lin
    • 2
  • Dragan Nerandzic
    • 3
  1. 1.Ryerson UniversityTorontoCanada
  2. 2.University of Ontario Institute of TechnologyOshawaCanada
  3. 3.Ericsson Canada Inc.MississaugaCanada

Personalised recommendations