RCDP: A Novel Content Delivery Solution for Wireless Networks Based on Raptor Codes

  • Miguel Báguena
  • Carlos T. Calafate
  • Juan-Carlos Cano
  • Pietro Manzoni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7363)


The growth of research on Forward Error Correction (FEC) coding has boosted the usage of FEC strategies when addressing the challenges of multicast and broadcast delivery. However, FEC approaches can also be used for unicast content delivery to avoid known TCP issues in wireless network environments. In this paper we exploit the error resilience properties of Raptor codes by proposing RCDP, a novel solution for reliable and bidirectional unicast communication in lossy links that can improve content delivery in situations where the network becomes the bottleneck. Since the implementation of RCDP in real systems involves important technical challenges, we also focus on the design, implementation, and optimization issues, proposing different architectural and design alternatives for RCDP. Our goal is to find the best trade-off between complexity and efficiency in order to maximize the throughput achieved under different conditions. Experimental results show that RCDP is a highly efficient solution for environments characterized by high delays and packet losses (e.g. ad-hoc networks), achieving significant performance improvements compared to traditional transport-layer protocols.


Application-layer FEC Raptor codes design and implementation testbed 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fu, Z., Zerfos, P., Luo, H., Lu, S., Zhang, L., Gerla, M.: The impact of multihop wireless channel on TCP throughput and loss. In: INFOCOM 2003: Twenty-Second Annual Joint Conference of the IEEE Computer and Communications, IEEE Societies, vol. 3, pp. 1744–1753. IEEE (2003)Google Scholar
  2. 2.
    Parvez, N., Mahanti, A., Williamson, C.: An analytic throughput model for TCP NewReno. IEEE/ACM Transactions on Networking 18(2), 448–461 (2010)CrossRefGoogle Scholar
  3. 3.
    Bhoedjang, R., Ruhl, T., Bal, H.: User-level network interface protocols. Computer 31(11), 53–60 (1998)CrossRefGoogle Scholar
  4. 4.
    Shokrollahi, A.: Raptor codes. IEEE Transactions on Information Theory 52(6), 2551–2567 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Balakrishnan, H., Padmanabhan, V., Seshan, S., Katz, R.: A comparison of mechanisms for improving TCP performance over wireless links. IEEE/ACM Transactions on Networking 5(6), 756–769 (1997)CrossRefGoogle Scholar
  6. 6.
    Balakrishnan, H., Seshan, S., Amir, E., Katz, R.: Improving TCP/IP performance over wireless networks. In: Proceedings of the 1st Annual International Conference on Mobile Computing and Networking, pp. 2–11. ACM (1995)Google Scholar
  7. 7.
    Parsa, C.: TULIP: A link-level protocol for improving TCP over wireless links. In: IEEE Wireless Communications and Networking Conference, WCNC 1999, pp. 1253–1257. IEEE (2002)Google Scholar
  8. 8.
    Brown, K., Singh, S.: M-TCP: TCP for mobile cellular networks. ACM SIGCOMM Computer Communication Review 27(5), 19–43 (1997)CrossRefGoogle Scholar
  9. 9.
    Sinha, P., Nandagopal, T., Venkitaraman, N., Sivakumar, R., Bharghavan, V.: WTCP: A reliable transport protocol for wireless wide-area networks. Wireless Networks 8(2/3), 301–316 (2002)zbMATHCrossRefGoogle Scholar
  10. 10.
    Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M.Y., Wang, R.: TCP westwood: end-to-end congestion control for wired/wireless networks. Wireless Networks 8, 467–479 (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Akbar, M.S., Ahmed, S.Z., Qadir, M.A.: Performance Optimization of Transmission Control Protocol in Heterogeneous Wireless Network during Mobility. IJCSNS International Journal of Computer Science and Network Security 8(8), 70–80 (2008)Google Scholar
  12. 12.
    Luby, M., Watson, M., Gasiba, T., Stockhammer, T., Xu, W.: Raptor codes for reliable download delivery in wireless broadcast systems. In: 3rd IEEE Consumer Communications and Networking Conference, CCNC 2006, vol. 1, pp. 192–197 (January 2006)Google Scholar
  13. 13.
    Chiao, H.-T., Li, K.-M., Sun, H.-M., Chang, S.-Y., Hou, H.-A.: Application-Layer FEC for file delivery over the WiMAX unicast networks. In: 2010 12th IEEE International Conference on Communication Technology (ICCT), pp. 685–688 (November 2010)Google Scholar
  14. 14.
    Luby, M., Shokrollahi, A., Watson, M., Stockhammer, T.: RaptorQ Forward Error Correction Scheme for Object Delivery, Internet Engineering Task Force, Internet Draft draft-ietf-rmt-bb-fec-raptorq-00, Work in progress (January 2010)Google Scholar
  15. 15.
    Jain, R., Routhier, S.A.: Packet trains - measurement and a new model for computer network traffic. IEEE Journal on Selected Areas in Communications 4, 986–995 (1986)CrossRefGoogle Scholar
  16. 16.
    Gu, Y., Grossman, R.: UDT: UDP-based data transfer for high-speed wide area networks. Computer Networks 51(7), 1777–1799 (2007)zbMATHCrossRefGoogle Scholar
  17. 17.
    Stevens, W.: TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms. Internet Engineering Task Force, RFC 2001 (January 1997)Google Scholar
  18. 18.
    Brakmo, L., O’Malley, S., Peterson, L.: TCP Vegas: New technique for congestion detection and avoidance. In: Proceedings of ACM SIGCOMM 1994 (August 1994)Google Scholar
  19. 19.
    Mathis, M., Mahdavi, J., Floyd, S., Romanow, A.: RFC2018: TCP Selective Acknowledgement Options. RFC Editor United States (1996)Google Scholar
  20. 20.
    Mathis, M., Mahdavi, J.: Forward acknowledgement: refining tcp congestion control. SIGCOMM Comput. Commun. Rev. 26, 281–291 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Miguel Báguena
    • 1
  • Carlos T. Calafate
    • 1
  • Juan-Carlos Cano
    • 1
  • Pietro Manzoni
    • 1
  1. 1.Department of Computer EngineeringUniversitat Politécnica de ValénciaSpain

Personalised recommendations