Debugging the Internet of Things: A 6LoWPAN/CoAP Testbed Infrastructure

  • Daniel Bimschas
  • Oliver Kleine
  • Dennis Pfisterer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7363)


This paper is based on two fundamental assumptions about a future Internet of Things (IoT): i) The amount of wireless, resource-constrained devices will outnumber the amount of devices in the current internet by several orders of magnitude and ii) those devices will be connected to the Internet over multi-hop wireless links. We argue that the experimental validation in testbeds is imperative to make those networks robust. However, there are only limited means to support researchers in “debugging” the actual communication on the wireless medium and often developers can only guess why their protocols don’t work in a given environment. In this paper, we present such a framework which extends the WISEBED testbed federation. Our contribution allows an easy-to-use browser-based experimentation and evaluation of wireless multi-hop protocols in all WISEBED-compatible testbeds (nine testbeds with  1000 sensor nodes and the SmartSantander [17] smart city testbed which will offer up to 20,000 IoT devices). Using a generic packet tracking framework for multiple platforms, researchers can easily detect hotspots and bottlenecks in the network and follow the routes of individual packets as they are forwarded. Experiment configurations can be shared on the web so that experiments can easily be repeated to verify published results. We demonstrate the usability of our approach by means of a real-world use-case.


Experimentally-driven Research Testbeds Internet of Things 6LoWPAN CoAP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arora, A., Ertin, E., Ramnath, R., Nesterenko, M., Leal, W.: Kansei: A high-fidelity sensing testbed. IEEE Internet Computing 10, 35–47 (2006)CrossRefGoogle Scholar
  2. 2.
    Baumgartner, T., Chatzigiannakis, I., Fekete, S., Koninis, C., Kröller, A., Pyrgelis, A.: Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks. In: Silva, J.S., Krishnamachari, B., Boavida, F. (eds.) EWSN 2010. LNCS, vol. 5970, pp. 162–177. Springer, Heidelberg (2010),, ISBN 978-3-642-11916-3 CrossRefGoogle Scholar
  3. 3.
    Bouckaert, S., Vandenberghe, W., Jooris, B., Moerman, I., Demeester, P.: The w-iLab.t Testbed. In: Magedanz, T., Gavras, A., Thanh, N.H., Chase, J.S. (eds.) TridentCom 2010. LNICST, vol. 46, pp. 145–154. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Chatzigiannakis, I., Fischer, S., Koninis, C., Mylonas, G., Pfisterer, D.: WISEBED: An Open Large-Scale Wireless Sensor Network Testbed. In: Komninos, N. (ed.) SENSAPPEAL 2009. LNICST, vol. 29, pp. 68–87. Springer, Heidelberg (2010), CrossRefGoogle Scholar
  5. 5.
    Coulson, G., Porter, B., Chatzigiannakis, I., Koninis, C., Fischer, S., Pfisterer, D., Bimschas, D., Braun, T., Hurni, P., Anwander, M., Wagenknecht, G., Fekete, S.P., Kröller, A., Baumgartner, T.: Flexible experimentation in wireless sensor networks. Communications of the ACM 55(1), 82–90 (2012), CrossRefGoogle Scholar
  6. 6.
    Exscal Research Group, Ohio State University: Extreme scale wireless sensor networking (2010),
  7. 7.
    Fielding, R.: Architectural Styles and the Design of Network-based Software Architectures. Ph.D. thesis, University of California, Irvine (2000)Google Scholar
  8. 8.
    Gluhak, A., Krco, S., Nati, M., Pfisterer, D., Mitton, N., Razafindralambo, T.: A survey on facilities for experimental internet of things research. IEEE Communications Magazine 49, 58–67 (2011), CrossRefGoogle Scholar
  9. 9.
    Kushalnagar, N., Montenegro, G., Schumacher, C.: IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals. RFC 4919 (Informational) (August 2007),
  10. 10.
    Netty Project: Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers and clients,
  11. 11.
    Pawlikowski, K., Jeong, H.D.J., Lee, J.S.R.: On credibility of simulation studies of telecommunication networks. IEEE Communications Magazine 40(1), 132–139 (2002), CrossRefGoogle Scholar
  12. 12.
    Pfisterer, D., Römer, K., Bimschas, D., Kleine, O., Mietz, R., Truong, C., Hasemann, H., Kröller, A., Pagel, M., Hauswirth, M., Karnstedt, M., Leggieri, M., Passant, A., Richardson, R.: SPITFIRE: Toward a semantic web of things. IEEE Communications Magazine 49, 40–48 (2011), CrossRefGoogle Scholar
  13. 13.
    Riverbed Technology: winpcap (2012),
  14. 14.
    Rothenpieler, P.: Poster abstract: Distributed protocol stacks for wireless sensor networks. In: 9th European Conference on Wireless Sensor Networks (EWSN 2012), Trento, Italy (February 2012)Google Scholar
  15. 15.
    Shelby, Z., Hartke, K., Bormann, C., Frank, B.: Constrained application protocol (CoAP) (CoRE working group) (2011) Online version at, (November 01, 2011)
  16. 16.
    Sly Technologies: jNetPcap,
  17. 17.
    SmartSantander consortium: SmartSantander EU FP7 project (2010),
  18. 18.
    TCPDUMP: libpcap,
  19. 19.
    Werner-Allen, G., Swieskowski, P., Welsh, M.: Motelab: a wireless sensor network testbed. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, IPSN 2005. IEEE Press, Piscataway (2005), Google Scholar
  20. 20.
    Wittenburg, G., Schiller, J.: A quantitative evaluation of the simulation accuracy of wireless sensor networks. In: Proceedings des 6. Fachgespraechs “Drahtlose Sensornetze” der GI/ITG-Fachgruppe “Kommunikation und Verteilte Systeme”, Aachen, Germany, pp. 23–26 (July 2007),

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Daniel Bimschas
    • 1
  • Oliver Kleine
    • 1
  • Dennis Pfisterer
    • 1
  1. 1.Institute of TelematicsUniversity of LübeckLübeckGermany

Personalised recommendations