Advertisement

Minimum Latency Aggregation Scheduling for Arbitrary Tree Topologies under the SINR Model

  • Guanyu Wang
  • Qiang-Sheng Hua
  • Yuexuan Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7363)

Abstract

Almost all the existing wireless data aggregation approaches need a topology construction step before scheduling. These solutions assume the availability of flexible topology controls. However, in real scenarios, lots of factors (impenetrable obstacles, barriers, etc.) limit the topology construction for wireless networks. In this paper we study a new problem called Minimum-Latency Aggregation Scheduling for Arbitrary Tree Topologies (MLAT). We first provide an NP-hardness proof for MLAT. Second, we draw an important conclusion that two frequently used greedy scheduling algorithms result in a large overhead compared with the optimal solution: the scheduling latency generated by these two greedy solutions are \(\sqrt{n}\) times the optimal result, where n is the total number of links. We finally present an approximation algorithm for MLAT which works well for the tree with a small depth. All the above results are based on the SINR (Signal-to-Interference-plus-Noise Ratio) model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, X., Hu, X., Zhu, J.: Minimum Data Aggregation Time Problem in Wireless Sensor Networks. In: Jia, X., Wu, J., He, Y. (eds.) MSN 2005. LNCS, vol. 3794, pp. 133–142. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Fanghänel, A., Keßelheim, T., Vöcking, B.: Improved Algorithms for Latency Minimization in Wireless Networks. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 447–458. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Transactions on Information Theory 46(2), 388–404 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Halldórsson, M.M., Mitra, P.: Wireless connectivity and capacity. In: SODA (2012)Google Scholar
  5. 5.
    Halldórsson, M.M., Wattenhofer, R.: Wireless Communication Is in APX. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 525–536. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Hua, Q.-S., Wang, Y., Yu, D., Tan, H.: Minimum latency link scheduling for arbitrary directed acyclic networks under precedence and sinr constraints. Journal of Interconnection Networks 12(1-2), 85–107 (2011)CrossRefGoogle Scholar
  7. 7.
    Huang, S.C.H., Wan, P.J., Vu, C.T., Li, Y., Yao, F.: Nearly constant approximation for data aggregation scheduling in wireless sensor networks. In: INFOCOM (2007)Google Scholar
  8. 8.
    Katz, B., Völker, M., Wagner, D.: Energy efficient scheduling with power control for wireless networks. In: WiOpt (2010)Google Scholar
  9. 9.
    Kesselheim, T.: A constant-factor approximation for wireless capacity maximization with power control in the sinr model. In: SODA (2011)Google Scholar
  10. 10.
    Lam, N.X., An, M.K., Huynh, D.T., Nguyen, T.N.: Minimum latency data aggregation in the physical interference model. In: MSWiM (2011)Google Scholar
  11. 11.
    Li, H., Hua, Q.-S., Wu, C., Lau, F.C.M.: Minimum-latency aggregation scheduling in wireless sensor networks under physical interference model. In: MSWiM (2010)Google Scholar
  12. 12.
    Li, X.Y., Xu, X.H., Wang, S.G., Tang, S.J., Dai, G.J., Zhao, J.Z., Qi, Y.: Efficient data aggregation in multi-hop wireless sensor networks under physical interference model. In: MASS (2009)Google Scholar
  13. 13.
    Moscibroda, T.: The worst-case capacity of wireless sensor networks. In: IPSN (2007)Google Scholar
  14. 14.
    Moscibroda, T., Wattenhofer, R.: The complexity of connectivity in wireless networks. In: INFOCOM (2006)Google Scholar
  15. 15.
    Moscibroda, T., Wattenhofer, R., Zollinger, A.: Topology control meets sinr: the scheduling complexity of arbitrary topologies. In: MOBIHOC (2006)Google Scholar
  16. 16.
    Anne, Y., Goussevskaia, O.O., Wattenhofer, R.: Complexity in geometric sinr. In: MOBIHOC (2007)Google Scholar
  17. 17.
    Wan, P.-J., Huang, S.C.-H., Wang, L.X., Wan, Z.Y., Jia, X.H.: Minimum-latency aggregation scheduling in multihop wireless networks. In: MOBIHOC (2009)Google Scholar
  18. 18.
    Wan, P.-J., Ma, C., Tang, S., Xu, B.: Maximizing Capacity with Power Control Under Physical Interference Model in Simplex Mode. In: Cheng, Y., Do Eun, Y., Qin, Z., Song, M., Xing, K. (eds.) WASA 2011. LNCS, vol. 6843, pp. 84–95. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Yu, B., Li, J., Li, Y.: Distributed data aggregation scheduling in wireless sensor networks. In: INFOCOM (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Guanyu Wang
    • 1
  • Qiang-Sheng Hua
    • 1
  • Yuexuan Wang
    • 1
  1. 1.Institute for Interdisciplinary Information ScienceTsinghua UniversityChina

Personalised recommendations