Skip to main content

Finding Efficient Circuits for Ensemble Computation

  • Conference paper
Theory and Applications of Satisfiability Testing – SAT 2012 (SAT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7317))

Abstract

Given a Boolean function as input, a fundamental problem is to find a Boolean circuit with the least number of elementary gates (AND, OR, NOT) that computes the function. The problem generalises naturally to the setting of multiple Boolean functions: find the smallest Boolean circuit that computes all the functions simultaneously. We study an NP-complete variant of this problem titled Ensemble Computation and, especially, its relationship to the Boolean satisfiability (SAT) problem from both the theoretical and practical perspectives, under the two monotone circuit classes: OR-circuits and SUM-circuits. Our main result relates the existence of nontrivial algorithms for CNF-SAT with the problem of rewriting in subquadratic time a given OR-circuit to a SUM-circuit. Furthermore, by developing a SAT encoding for the ensemble computation problem and by employing state-of-the-art SAT solvers, we search for concrete instances that would witness a substantial separation between the size of optimal OR-circuits and optimal SUM-circuits. Our encoding allows for exhaustively checking all small witness candidates. Searching over larger witness candidates presents an interesting challenge for current SAT solver technology.

This research is supported in part by Academy of Finland (grants 132812 and 251170 (MJ), 252083 and 256287 (PK), and 125637 (MK)), and by Helsinki Doctoral Programme in Computer Science - Advanced Computing and Intelligent Systems (JK).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. FMV Technical Report 10/1, Johannes Kepler University, Linz, Austria (2010)

    Google Scholar 

  2. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M., Nederlof, J., Parviainen, P.: Fast zeta transforms for lattices with few irreducibles. In: Proc. SODA, pp. 1436–1444. SIAM (2012)

    Google Scholar 

  3. Dantsin, E., Wolpert, A.: On Moderately Exponential Time for SAT. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 313–325. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Demenkov, E., Kojevnikov, A., Kulikov, A.S., Yaroslavtsev, G.: New upper bounds on the Boolean circuit complexity of symmetric functions. Inf. Process. Lett. 110(7), 264–267 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Estrada, G.G.: A Note on Designing Logical Circuits Using SAT. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 410–421. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Fuhs, C., Schneider-Kamp, P.: Synthesizing Shortest Linear Straight-Line Programs over GF(2) Using SAT. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 71–84. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company (1979)

    Google Scholar 

  9. Gebser, M., Kaufmann, B., Schaub, T.: The Conflict-Driven Answer Set Solver clasp: Progress Report. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 509–514. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Heule, M., Dufour, M., van Zwieten, J.E., van Maaren, H.: March_eq: Implementing Additional Reasoning into an Efficient Look-Ahead SAT Solver. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 345–359. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. System Sci. 62(2), 367–375 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kamath, A.P., Karmarkar, N.K., Ramakrishnan, K.G., Resende, M.G.C.: An interior point approach to Boolean vector function synthesis. In: Proc. MWSCAS, pp. 185–189. IEEE (1993)

    Google Scholar 

  13. Kojevnikov, A., Kulikov, A.S., Yaroslavtsev, G.: Finding Efficient Circuits Using SAT-Solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 32–44. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs of bounded treewidth are probably optimal. In: Proc. SODA, pp. 777–789. SIAM (2010)

    Google Scholar 

  15. McKay, B.: nauty user’s guide. Tech. Rep. TR-CS-90-02, Australian National University, Department of Computer Science (1990)

    Google Scholar 

  16. Pătraşcu, M., Williams, R.: On the possibility of faster SAT algorithms. In: Proc. SODA, pp. 1065–1075. SIAM (2010)

    Google Scholar 

  17. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Automation of Reasoning 2: Classical Papers on Computational Logic 1967-1970, pp. 466–483. Springer, Heidelberg (1983)

    Google Scholar 

  18. Valiant, L.G.: Negation is powerless for Boolean slice functions. SIAM J. Comput. 15(2), 531–535 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. West, D.B.: Introduction to graph theory. Prentice Hall Inc., Upper Saddle River (1996)

    MATH  Google Scholar 

  20. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its implications. Theoret. Comput. Sci. 348(2-3), 357–365 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Williams, R.: Improving exhaustive search implies superpolynomial lower bounds. In: Proc. STOC, pp. 231–240. ACM (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Järvisalo, M., Kaski, P., Koivisto, M., Korhonen, J.H. (2012). Finding Efficient Circuits for Ensemble Computation. In: Cimatti, A., Sebastiani, R. (eds) Theory and Applications of Satisfiability Testing – SAT 2012. SAT 2012. Lecture Notes in Computer Science, vol 7317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31612-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31612-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31611-1

  • Online ISBN: 978-3-642-31612-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics