Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7317))

Abstract

In incremental SAT solving, assumptions are propositions that hold solely for one specific invocation of the solver. Effective propagation of assumptions is vital for ensuring SAT solving efficiency in a variety of applications. We propose algorithms to handle assumptions. In our approach, assumptions are modeled as unit clauses, in contrast to the current state-of-the-art approach that models assumptions as first decision variables. We show that a notable advantage of our approach is that it can make preprocessing algorithms much more effective. However, our initial scheme renders assumption-dependent (or temporary) conflict clauses unusable in subsequent invocations. To resolve the resulting problem of reduced learning power, we introduce an algorithm that transforms such temporary clauses into assumption-independent pervasive clauses. In addition, we show that our approach can be enhanced further when a limited form of look-ahead information is available. We demonstrate that our approach results in a considerable performance boost of the SAT solver on instances generated by a prominent industrial application in hardware validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Silva, J.P.M., Sakallah, K.A.: Robust search algorithms for test pattern generation. In: FTCS, pp. 152–161 (1997)

    Google Scholar 

  2. Shtrichman, O.: Pruning Techniques for the SAT-Based Bounded Model Checking Problem. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS, vol. 2144, pp. 58–70. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Whittemore, J., Kim, J., Sakallah, K.A.: SATIRE: A new incremental satisfiability engine. In: DAC, pp. 542–545. ACM (2001)

    Google Scholar 

  4. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr. Notes Theor. Comput. Sci. 89(4) (2003)

    Google Scholar 

  5. Cabodi, G., Lavagno, L., Murciano, M., Kondratyev, A., Watanabe, Y.: Speeding-up heuristic allocation, scheduling and binding with SAT-based abstraction/refinement techniques. ACM Trans. Design Autom. Electr. Syst. 15(2) (2010)

    Google Scholar 

  6. Franzén, A., Cimatti, A., Nadel, A., Sebastiani, R., Shalev, J.: Applying SMT in symbolic execution of microcode. [17], 121–128

    Google Scholar 

  7. Eén, N., Mishchenko, A., Amla, N.: A single-instance incremental SAT formulation of proof- and counterexample-based abstraction. [17], 181–188

    Google Scholar 

  8. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Eén, N., Biere, A.: Effective Preprocessing in SAT Through Variable and Clause Elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Khasidashvili, Z., Kaiss, D., Bustan, D.: A compositional theory for post-reboot observational equivalence checking of hardware. In: FMCAD, pp. 136–143. IEEE (2009)

    Google Scholar 

  11. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using SAT procedures instead of BDDs. In: DAC, pp. 317–320 (1999)

    Google Scholar 

  12. Khasidashvili, Z., Nadel, A.: Implicative simultaneous satisfiability and applications. In: HVC 2011 (2011) (to appear)

    Google Scholar 

  13. Kupferschmid, S., Lewis, M.D.T., Schubert, T., Becker, B.: Incremental preprocessing methods for use in BMC. Formal Methods in System Design 39(2), 185–204 (2011)

    Article  Google Scholar 

  14. Biere, A.: Lingeling and Plingeling, http://fmv.jku.at/lingeling/

  15. Soos, M.: Cryptominisat2, http://www.msoos.org/cryptominisat2

  16. Ryvchin, V., Strichman, O.: Faster Extraction of High-Level Minimal Unsatisfiable Cores. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 174–187. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Bloem, R., Sharygina, N. (eds.): Proceedings of 10th International Conference on Formal Methods in Computer-Aided Design, FMCAD 2010, Lugano, Switzerland, October 20-23. IEEE (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nadel, A., Ryvchin, V. (2012). Efficient SAT Solving under Assumptions. In: Cimatti, A., Sebastiani, R. (eds) Theory and Applications of Satisfiability Testing – SAT 2012. SAT 2012. Lecture Notes in Computer Science, vol 7317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31612-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31612-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31611-1

  • Online ISBN: 978-3-642-31612-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics