Skip to main content

Sparse Fault-Tolerant Spanners for Doubling Metrics with Bounded Hop-Diameter or Degree

  • Conference paper
Automata, Languages, and Programming (ICALP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7391))

Included in the following conference series:

Abstract

We study fault-tolerant spanners in doubling metrics. A subgraph H for a metric space X is called a k-vertex-fault-tolerant t-spanner ((k,t)-VFTS or simply k-VFTS), if for any subset S ⊆ X with |S| ≤ k, it holds that d H ∖ S (x, y) ≤ t ·d(x, y), for any pair of x, y ∈ X ∖ S.

For any doubling metric, we give a basic construction of k-VFTS with stretch arbitrarily close to 1 that has optimal O(kn) edges. In addition, we also consider bounded hop-diameter, which is studied in the context of fault-tolerance for the first time even for Euclidean spanners. We provide a construction of k-VFTS with bounded hop-diameter: for m ≥ 2n, we can reduce the hop-diameter of the above k-VFTS to O(α(m, n)) by adding O(km) edges, where α is a functional inverse of the Ackermann’s function.

Finally, we construct a fault-tolerant single-sink spanner with bounded maximum degree, and use it to reduce the maximum degree of our basic k-VFTS. As a result, we get a k-VFTS with O(k 2 n) edges and maximum degree O(k 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.H.M.: Euclidean spanners: short, thin, and lanky. In: STOC 1995, pp. 489–498 (1995)

    Google Scholar 

  2. Callahan, P.B., Kosaraju, S.R.: Faster algorithms for some geometric graph problems in higher dimensions. In: SODA 1993, pp. 291–300 (1993)

    Google Scholar 

  3. Chan, H.T.-H., Gupta, A., Maggs, B.M., Zhou, S.: On hierarchical routing in doubling metrics. In: SODA 2005, pp. 762–771 (2005)

    Google Scholar 

  4. Chan, T.-H.H., Gupta, A.: Small hop-diameter sparse spanners for doubling metrics. Discrete & Computational Geometry 41(1), 28–44 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chazelle, B.: Computing on a free tree via complexity-preserving mappings. Algorithmica 2, 337–361 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault-tolerant spanners for general graphs. In: STOC 2009, pp. 435–444 (2009)

    Google Scholar 

  7. Czumaj, A., Zhao, H.: Fault-tolerant geometric spanners. Discrete & Computational Geometry 32(2), 207–230 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Das, G., Narasimhan, G.: A fast algorithm for constructing sparse euclidean spanners. In: Symposium on Computational Geometry, pp. 132–139 (1994)

    Google Scholar 

  9. Dinitz, M., Krauthgamer, R.: Fault-tolerant spanners: better and simpler. In: PODC 2011, pp. 169–178 (2011)

    Google Scholar 

  10. Gottlieb, L.-A., Roditty, L.: An Optimal Dynamic Spanner for Doubling Metric Spaces. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 478–489. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-distortion embeddings. In: FOCS 2003, pp. 534–543 (2003)

    Google Scholar 

  12. Har-Peled, S., Mendel, M.: Fast construction of nets in low dimensional metrics, and their applications. In: Symposium on Computational Geometry, pp. 150–158 (2005)

    Google Scholar 

  13. Levcopoulos, C., Narasimhan, G., Smid, M.H.M.: Efficient algorithms for constructing fault-tolerant geometric spanners. In: STOC 1998, pp. 186–195 (1998)

    Google Scholar 

  14. Lukovszki, T.: New Results on Fault Tolerant Geometric Spanners. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 193–204. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Narasimhan, G., Smid, M.H.M.: Geometric spanner networks. Cambridge University Press (2007)

    Google Scholar 

  16. Solomon, S., Elkin, M.: Balancing Degree, Diameter and Weight in Euclidean Spanners. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 48–59. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 22(2), 215–225 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chan, T.H.H., Li, M., Ning, L. (2012). Sparse Fault-Tolerant Spanners for Doubling Metrics with Bounded Hop-Diameter or Degree. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31594-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31594-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31593-0

  • Online ISBN: 978-3-642-31594-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics