Bacterial-Inspired Algorithms for Engineering Optimization

  • Ben Niu
  • Jingwen Wang
  • Hong Wang
  • Lijing Tan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7389)


Bio-inspired optimization techniques using analogy of swarming principles and social behavior in nature have been adopted to solve a variety of problems. In this paper, Bacterial foraging optimization (BFO) was employed to achieve high-quality solutions to engineering optimization problems. Two modifications of BFO, BFO with linear decreasing chemotaxis step (BFO-LDC) and BFO with non-linear decreasing chemotaxis step (BFO-NDC) were proposed to further improve the performance of the original algorithm. In order to illustrate the efficiency of the proposed method (BFO-LDC and BFO-NDC) for engineering problem, an engineering design problem was selected as testing functions, and the performance is compared against some state-of-the-art approaches. The experimental results demonstrated that the modified BFOs are of greater efficiency and can be used as general approach for engineering problems.


Engineering problem constrained handling optimization bacterial foraging linear decreasing chemotaxis non-linear decreasing chemotaxis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Passino, K.M.: Biomimicry of Bacterial Foraging for Distributed Optimization and Control. IEEE Control Systems Magazine 22(3), 52–67 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Michalewicz, Z., Schoenauer, M.: Evolutionary Algorithms for Constrained Parameter Optimization Problems. Evolutionary Computation 4(1), 1–32 (1996)CrossRefGoogle Scholar
  3. 3.
    Ray, T., Liew, K.M.: Society and Civilization: An Optimization Algorithm Based on the Simulation of Social Behavior. IEEE Transactions on Evolutionary Computation 7(4), 386–396 (2003)CrossRefGoogle Scholar
  4. 4.
    Belegundu, A.D.: A Study of Mathematical Programming Methods for Structural Optimization. Science and Engineering 43(12), 383 (1983)Google Scholar
  5. 5.
    Coello, C.A.C.: Constraint-handling in Genetic Algorithms Through The Use of Dominance-based Tournament Selection. Advanced Engineering Informatics 16, 193–203 (2002)CrossRefGoogle Scholar
  6. 6.
    Niu, B., Fan, Y., Wang, H., Li, L., Wang, X.F.: Novel Bacterial Foraging Optimization with Time-varying Chemotaxis Step. International Journal of Artificial Intelligence 7(A11), 257–273 (2011)Google Scholar
  7. 7.
    Niu, B., Wang, H., Tan, L.J., Xu, J.: Multi-objective Optimization Using BFO Algorithm. In: Huang, D.-S., Gan, Y., Premaratne, P., Han, K. (eds.) ICIC 2011. LNCS (LNBI), vol. 6840, pp. 582–587. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Niu, B., Xue, B., Li, L., Chai, Y.: Symbiotic Multi-swarm PSO for Portfolio Optimization. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang, H.-J., Bevilacqua, V. (eds.) ICIC 2009. LNCS, vol. 5755, pp. 776–784. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Amirjanov, A.: The Development of a Changing Range Genetic Algorithm. Computer Methods in Applied Mechanics and Engineering 195, 2495–2508 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Arora, J.S.: Introduction to Optimum Design. McGraw-Hill, New York (1989)Google Scholar
  11. 11.
    Mahdavi, M., Fesanghary, M., Damangir, E.: An Improved Harmony Search Algorithm for Solving Optimization Problems. Applied Mathematics and Computation 188(2), 1567–1579 (2007)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ben Niu
    • 1
    • 2
    • 3
    • 4
  • Jingwen Wang
    • 1
  • Hong Wang
    • 1
  • Lijing Tan
    • 5
  1. 1.College of ManagementShenzhen UniversityShenzhenChina
  2. 2.Hefei Institute of Intelligent MachinesChinese Academy of SciencesHefeiChina
  3. 3.e-Business Technology InstituteThe University of HongkongHongkongChina
  4. 4.Institute for Cultural IndustriesShenzhen UniversityShenzhenChina
  5. 5.Management SchoolJinan UniversityGuangzhouChina

Personalised recommendations