Root Growth Model for Simulation of Plant Root System and Numerical Function Optimization

  • Hao Zhang
  • Yunlong Zhu
  • Hanning Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7389)


This paper presents the study of modelling root growth behaviours in the soil. The purpose of the study is to investigate a novel biologically inspired methodology for optimization of numerical function. A mathematical framework is designed to model root growth patterns. Under this framework, the interactions between the soil and root growth are investigated. A novel approach called “root growth algorithm” (RGA) is derived in the framework and simulation studies are undertaken to evaluate this algorithm. The simulation results show that the proposed model can reflect the root growth behaviours and the numerical results also demonstrate RGA is a powerful search and optimization technique for numerical function optimization.


Root growth simulation numerical function optimization modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gerwitz, A., Page, E.R.: An Empirical Mathematical Model to Describe Plant Root Systems. Journal of Applied Ecology 11(2), 773–781 (1974)CrossRefGoogle Scholar
  2. 2.
    Hodge, A.: Root Decisions. Plant, Cell and Environment 32(6), 628–640 (2009)CrossRefGoogle Scholar
  3. 3.
    Leitner, D., Klepsch, S., Bodner, G., Schnepf, A.: A Dynamic Root System Growth Model Based on L-Systems. Plant Soil 332, 177–192 (2010)CrossRefGoogle Scholar
  4. 4.
    Eberhart, R.C., Shi, Y., Kennedy, J.: Swarm Intelligence. Morgan Kaufmann (2001) Google Scholar
  5. 5.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  6. 6.
    Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Press, New York (1995)CrossRefGoogle Scholar
  7. 7.
    Castro, D.L.N., Zuben, V.F.J.: Artificial Immune Systems, Part I. Basic Theory and Applications, Technical Report Rt Dca 01/99, Feec/Unicamp, Brazil (1999)Google Scholar
  8. 8.
    Karaboga, D., Basturk, B.: On the Performance of Artificial Bee Colony (ABC) Algorithm. Applied Soft Computing 8(1), 687–697 (2008)CrossRefGoogle Scholar
  9. 9.
    Cai, W., Yang, W., Chen, X.: A Global Optimization Algorithm Based on Plant Growth Theory: Plant Growth Optimization. In: International Conference on Intelligent Computation Technology and Automation (ICICTA), vol. 1, pp. 1194–1199 (2008)Google Scholar
  10. 10.
    Krink, T., Vestertroem, J.S., Riget, J.: Particle Swarm Optimization with Spatial Particle Extension. In: Proceedings of the IEEE Congress on Evolutionary Computation, Honolulu, Hawaii, pp. 1474–1479. IEEE Press, New York (2002)Google Scholar
  11. 11.
    Shi, Y., Ebrehart, R.C.: A Modified Particle Swarm Optimizer. In: Proceeding of the 1998 IEEE International Conference on Evolutionary Computation, Piscataway, NJ, pp. 69–73 (1998)Google Scholar
  12. 12.
    Shi, Y., Eberhart, R.C.: Empirical Study of Particle Swarm Optimization. In: Proceedings of the 1999 IEEE Congress on Evolutionary Computation, Piscataway, NJ, pp. 1945–1950. IEEE Press, New York (1999)Google Scholar
  13. 13.
    Corne, D., Dorigo, M., Glover, F.: New Ideas in Optimization. McGraw-Hill (1999)Google Scholar
  14. 14.
    Vesterstrom, J., Thomsen, R.: A Comparative Study of Differential Evolution Particle Swarm Optimization and Evolutionary Algorithms on Numerical Benchmark Problems. In: IEEE Congress on Evolutionary Computation (CEC 2004), pp. 1980–1987. IEEE Press, New York (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hao Zhang
    • 1
    • 2
  • Yunlong Zhu
    • 1
  • Hanning Chen
    • 1
  1. 1.Key Laboratory of Industrial Informatics, Shenyang Institute of AutomationChinese Academy of SciencesShenyangChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations