Advertisement

Trajectory Estimation of a Tracked Mobile Robot Using the Sigma-Point Kalman Filter with an IMU and Optical Encoder

  • Xuan Vinh Ha
  • Cheolkeun Ha
  • Jewon Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7389)

Abstract

Trajectory estimations of tracked mobile robots have been widely used to explore unknown environments and in military applications. In this paper, we estimate the precise trajectory of a tracked skid-steered mobile robot that contains an inertial measurement unit (IMU) and an optical encoder. For a systematic estimation, we implement a sigma-point Kalman filter (SPKF), which produces more accurate trajectory information, is easier to calculate, and requires no analytic derivations or Jacobians. The proposed SPKF compensates for the limitations of the IMU and encoder in trajectory estimation problems, as observed from our experimental results.

Keywords

Tracked mobile robots Inertial Measurement Unit (IMU) Sensor fusion Sigma-Point Kalman Filter (SPKF) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weinstein, A.J., Moore, K.L.: Pose Estimation of Ackerman Steering Vehicles for Outdoors Autonomous Navigation. In: 2010 IEEE International Conference on Industrial Technology, pp. 579–584 (2010)Google Scholar
  2. 2.
    Lee, T., Shin, J., Cho, D.: Position Estimation for Mobile Robot Using In-plane 3-axis IMU and Active Beacon. In: IEEE International Symposium on Industrial Electronics, pp. 1956–1961 (2009)Google Scholar
  3. 3.
    Espinosa, F., Santos, C., Marrón-Romera, M., Pizarro, D., Valdés, F., Dongil, F.J.: Odometry and Laser Scanner Fusion Based on a Discrete Extended Kalman Filter for Robotic Platooning Guidance. Sensor 9, 8339–8357 (2011)CrossRefGoogle Scholar
  4. 4.
    Tamas, L., Lazea, G., Robotin, R., Marcu, C., Herle, S., Szekely, Z.: State Estimation Based on Kalman Filtering Techniques in Navigation. In: IEEE International Conference on Automation, Quality and Testing, Robotics, pp. 147–152 (2008)Google Scholar
  5. 5.
    Suliman, C., Moldoveanu, F.: Unscented Kalman Filter Position Estimation for An Autonomous Mobile Robot. Bulletin of the Transilvania University of Brasov. 3 (2010)Google Scholar
  6. 6.
    van de Merwe, R., Wan, E.A.: Sigma-Point Kalman Filters for Integrated Navigation. Institute of Navigation Annual Technical Meeting (2004)Google Scholar
  7. 7.
    Flenniken IV, W.S., Wall, J.H., Bevly, D.M.: Characterization of Various IMU Error Sources and the Effect on Navigation Performance. In: Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation, pp. 967–978 (2005)Google Scholar
  8. 8.
    Yi, J., Wang, H., Zhang, J., Song, D., Jayasuriya, S., Liu, J.: Kinematic Modeling and Analysis of Skid-Steered Mobile Robots With Ap-plications to Low-Cost Inertial-Measurement-Unit-Based Motion estimation. IEEE Transactions on Robotics 25, 1087–1097 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xuan Vinh Ha
    • 1
  • Cheolkeun Ha
    • 1
  • Jewon Lee
    • 2
  1. 1.School of Mechanical EngineeringUniversity of UlsanRepublic of Korea
  2. 2.Prigent Ltd.Republic of Korea

Personalised recommendations