An Adaptive Non Local Spatial Fuzzy Image Segmentation Algorithm

  • Hanqiang Liu
  • Feng Zhao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7389)


Fuzzy c-means clustering algorithm (FCM) is one of the most widely used methods for image segmentation. In order to overcome the sensitivity of FCM to noise in images, we introduce a novel non local adaptive spatial constraint term, which is defined by using the non local spatial information of pixels, into the objective function of FCM and propose an adaptive non local spatial fuzzy image segmentation algorithm (ANLS_FIS). In this method, the non-local spatial information of each pixel plays a different role in image segmentation. ANLS_FIS can effectively deal with noise while preserving the geometrical edges in the image. Experiments on synthetic and real images, especially magnetic resonance (MR) images, show that ANLS_FIS is more robust than the modified FCM algorithms with local spatial constraint.


FCM Image segmentation Non-local spatial information adaptive spatial constraint term noisy image Magnetic resonance (MR) image 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pal, N.R., Pal, S.K.: A Review on Image Segmentation Techniques. Pattern Recognition 26(9), 1277–1294 (1993)CrossRefGoogle Scholar
  2. 2.
    Zhang, H., Fritts, J.E., Goldman, S.A.: Image Segmentation Evaluation: A Survey of Unsupervised Methods. Comput. Vision and Image. Under. 110(2), 260–280 (2008)CrossRefGoogle Scholar
  3. 3.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)zbMATHCrossRefGoogle Scholar
  4. 4.
    Chen, S.C., Zhang, D.Q.: Robust Image Segmentation Using FCM with Spatial Constraints Based on New Kernel-induced Distance Measure. IEEE Trans. Syst., Man, Cybern. 34(4), 1907–1916 (2004)CrossRefGoogle Scholar
  5. 5.
    Fan, J.L., Zhen, W.Z., Xie, W.X.: Suppressed Fuzzy C-means Clustering Algorithm. Pattern Recognition Lett. 24(9-10), 1607–1612 (2003)zbMATHCrossRefGoogle Scholar
  6. 6.
    Zhu, L., Chung, F.L., Wang, S.T.: Generalized Fuzzy C-means Clustering Algorithm with Improved Fuzzy Partitions. IEEE Trans. Syst. Man, Cybern. B, Cybern. 39(3), 578–591 (2009)CrossRefGoogle Scholar
  7. 7.
    Chuang, K.S., Tzeng, H.L., Chen, S., Wu, J., Chen, T.J.: Fuzzy C-means Clustering with Spatial Information for Image Segmentation. Comput. Med. Imaging Graph. 30(1), 9–15 (2006)CrossRefGoogle Scholar
  8. 8.
    Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A Modified Fuzzy C-means Algorithm for Bias Field Estimation and Segmentation of MRI Data. IEEE Trans. Med. Imaging. 21(3), 193–199 (2002)CrossRefGoogle Scholar
  9. 9.
    Szilagyi, L., Benyo, Z., Szilagyii, S., Adam, H.S.: MR Brain Image Segmentation Using An Enhanced Fuzzy C-means Algorithm. In: Proc. of 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, pp. 17–21 (2003)Google Scholar
  10. 10.
    Cai, W., Chen, S., Zhang, D.: Fast and Robust Fuzzy C-means Clustering Algorithms Incorporating Local Information for Image Segmentation. Pattern Recognition 40(3), 825–838 (2007)zbMATHCrossRefGoogle Scholar
  11. 11.
    Krinidis, S., Chatzis, V.: A Robust Fuzzy Local Information C-Means Clustering Algorithm. IEEE Trans. Image Process. 19(5), 1328–1337 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Buades, A., Coll, B., Morel, J.M.: A Non-local Algorithm for Image Denoising. In: Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 60–65 (2005)Google Scholar
  13. 13.
    Bezdek, J.C.: Cluster Validity with Fuzzy Sets. Cybernetics and Systems 3(3), 58–73 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Bezdek, J.C.: Mathematical Models for Systematic and Taxonomy. In: Proc. of Eigth International Conference on Numerical Taxonomy, pp. 143–166 (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hanqiang Liu
    • 1
  • Feng Zhao
    • 2
  1. 1.School of Computer ScienceShaanxi Normal UniversityXi’anP.R. China
  2. 2.School of Telecommunications and Information EngineeringXi’an University of Posts and TelecommunicationsXi’anP.R. China

Personalised recommendations