Sequence-Based Prediction of Protein-Protein Interactions Using Random Tree and Genetic Algorithm

  • Lei Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7389)


Protein-protein interactions play important roles in the course of cell functions such as metabolic pathways and genetic information processing. There are many shortcomings of traditional experiments such as tediousness and laboriousness. The machine learning methods have been developed to predict PPIs, and preliminary results have demonstrated their feasibility. Here, we introduce a sequence-based random tree and GA to infer PPI. Experimental results on S.cerevisiae dataset from DIP show that our novel method performs well than rotation forest, with higher accuracy, sensitivity and precision. Most importantly, our method runs faster than rotation forest.


Protein-protein interactions protein sequence autocorrelation descriptor random tree GA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shi, M.G., Xia, J.F., Li, X.L., Huang, D.S.: Predicting Protein-protein Interactions from Sequence using Correlation Coefficient and High-quality Interaction Dataset. Amino Acids 38, 891–899 (2010)CrossRefGoogle Scholar
  2. 2.
    Zhu, H., Bilgin, M., Bangham, R., et al.: Global Analysis of Protein Activities Using Proteome Chips. Science 293, 2101–2105 (2001)CrossRefGoogle Scholar
  3. 3.
    Marcotte, E.M., Pellegrini, M., Ng, H.L., Rice, D.W., Yeates, T.O., Eisenberg, D.: Detecting Protein-protein Interactions from Genome Sequences. Science 285, 751–753 (1999)CrossRefGoogle Scholar
  4. 4.
    Pazos, F., Valencia, A.: Similarity of Phylogenetic Trees as Indicator of Protein-protein Interaction. Protein Eng. 14, 609–614 (2001)CrossRefGoogle Scholar
  5. 5.
    Pazos, F., Helmer-Citterich, M., Ausiello, G., Valencia, A.: Correlated Mutations Contain Information about Protein-protein Interaction. J. Mol. Biol. 271, 511–523 (1997)CrossRefGoogle Scholar
  6. 6.
    Bock, J., Gough, D.: Prediticing Protein-protein Interactions from Primary Structure. Bioinformatics 17, 455–460 (2001)CrossRefGoogle Scholar
  7. 7.
    Ben-Hur, A., Noble, W.S.: Kernel Methods for Predicting Protein-protein Interactions. Bioinformatics 21, i38–i46 (2005)Google Scholar
  8. 8.
    Shen, J.W., Zhang, J., Luo, X.M., Zhu, W.L., Yu, K.Q., Chen, K.X., Li, Y.X., Jiang, H.L.: Predicting Protein-protein Interactions based on Sequence Information. Proceedings of the National Academy of Sciences 104, 4337–4341 (2007)CrossRefGoogle Scholar
  9. 9.
    Xia, J.F., Han, K., Huang, D.S.: Sequence-based Prediction of Protein-protein Interactions by Means of Rotation Forest and Autocorrelation Descriptor. Protein & Peptide Letters 17, 137–145 (2010)CrossRefGoogle Scholar
  10. 10.
    Deng, M., Mehta, S., Sun, F.Z.: Inferring Domain-domain Interactions from Protein-protein Interactions. Genome Res. 12, 1540–1548 (2002)CrossRefGoogle Scholar
  11. 11.
    Chen, X.W., Liu, M.: Prediction of Protein-protein Interactions using Random Decision Forest Framework. Bioinformatics 21, 4394–4400 (2005)CrossRefGoogle Scholar
  12. 12.
    Lqbal, M., Freitas, A.A., Johnson, C.G., Vergassola, M.: Message-passing Algorithms for the Prediction of Protein Domain Interactions from Protein-protein Interaction Data. Bioinformatics 24, 2064–2070 (2008)CrossRefGoogle Scholar
  13. 13.
    Guo, Y.Z., Yu, L.Z., Wen, Z.N., Li, M.L.: Using Support Vector Machine Combined with Auto Covariance to Predict Protein-protein Interactions from Protein Sequences. Nucleic Acids Research 36, 3025–3030 (2008)CrossRefGoogle Scholar
  14. 14.
    Lo, S., Cai, C., Chen, Y., Maxey, C.M.: Effect of Training Datasets on Support Vector Machine Prediction of Protein-protein Interactions. Proteomics 5, 876–884 (2005)CrossRefGoogle Scholar
  15. 15.
    Moran, P.A.: Notes on Continuous Stochastic Phenomena. Biometrika 37, 17–23 (1950)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Broto, P., Moreau, G., Vandicke, C.: Molecular Structures: Perception Autocorrelation Descriptor and Non-local Interactions. Neurocomputing 68, 66–70 (1984)Google Scholar
  17. 17.
    Zhou, Z.H., Wu, J.X., Tang, W.: Ensembling Neural Networks: Many Could be Better than All. Artificial Intelligence 137, 239–263 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Houck, C.R., Joines, J.A., Kay, M.G.: A Genetic Algorithm for Function Optimization: a Matlab Implementation. Technical Report: NCSU-IE-TR-95-09, North Carolina State University, Raleigh, NC (2005)Google Scholar
  19. 19.
    Breiman, L.: Random forest. Machine learning 45, 5–32 (2001)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lei Zhang
    • 1
    • 2
  1. 1.College of life ScienceUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Intelligent Computing Laboratory, Institute of Intelligent MachinesChinese Academy of SciencesHefeiChina

Personalised recommendations