Identifying CpG Islands in Genome Using Conditional Random Fields

  • Wei Liu
  • Hanwu Chen
  • Ling Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7389)


This paper presents a novel method for CpG islands location identification based on conditional random fields (CRF) model. The method transforms CpG islands location identification into the problem of sequential data labeling. Based on the nature of CpG islands location, we design the methods of model constructing, training and decoding in CRF accordingly. Experimental results on benchmark data sets show that our algorithm is more practicable and efficient than the traditional methods.


conditional random fields model CpG islands sequential data labeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li, W.J., Li, M., Xin, R.H., Wei, L.H.: Promoter Recognition in Human Genome Based on KL Divergence and BP Neural Network. Journal of Liaoning Normal University (Natural Science Edition) 3(33), 42–45 (2010)Google Scholar
  2. 2.
    Huang, Y.K.: Promoter Recognition System Research from Gene Sequence Data. The Master’s Thesis of Harbin Engineering University (2009)Google Scholar
  3. 3.
    Zhang, C.T.: The Current Status and The Prospect of Bioinformatics. The Journal of Liaoning Science and Technology 08, 25–26 (2001)Google Scholar
  4. 4.
    Tong, Q., Zhen, H.R., Ning, Y.: A Gene-prediction Algorithm Based on the Statistical Combination and the Classification in Terms of CpG Content. Journal of Beijing Biomedical Engineering 4(26), 178–181 (2007)Google Scholar
  5. 5.
    Takai, D., Jones, P.A.: Comprehensive Analysis of CpG Islands in Hhuman ChromoSomes 21 and 22. Proc. Natl. Acad. Sci. USA 99(6), 3740–3745 (2002)CrossRefGoogle Scholar
  6. 6.
    Hackenberg, M., Previtil, C., Luis, L.E., et al.: CpG Cluster: a Distance-based Algorithm for CpG-island Detection. BMC Bioinformatics 7, 446 (2006)CrossRefGoogle Scholar
  7. 7.
    Wang, Y., Leung, F.C.: An Evaluation of New Criteria for CpG Islands in the Human Genome as Gene Markers. Bioinformatics 20(7), 1170–1177 (2004)CrossRefGoogle Scholar
  8. 8.
    Wang, J.L., Su, J.Z., Wang, F.C., Ying, Z.Y.: A New Method to Predict CpG-islands Based on Fuzzy Theory. China Journal of Bioinformatics 6(7), 91–94 (2009)Google Scholar
  9. 9.
    Shi, O.Y., Yang, J., Tian, X.: Hidden Markov Model for CpG Islands Prediction Based on Matlab. Computer Applications and Software 11(25), 214–215 (2008)Google Scholar
  10. 10.
    Jiang, H.J., Zhang, Z.L.: Discrimination of CpG Islands Location Based on HMM. Mathematical Theory and Applications 6(29), 113–116 (2009)Google Scholar
  11. 11.
    John, L., Andrew, M.C., Fernando, P.: Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In: Proc. of the 18th ICML, pp. 282–289. Morgan Kaufmann, San Francisco (2001)Google Scholar
  12. 12.
    Hammersley, J.M., Clifford, P.: Markov Field on Finite Graphs and Lattices (1971) (unpublished)Google Scholar
  13. 13.
  14. 14.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wei Liu
    • 1
    • 2
  • Hanwu Chen
    • 1
  • Ling Chen
    • 2
    • 3
  1. 1.Department of Computer Science and EngineeringSoutheast UniversityNanjingChina
  2. 2.Department of Computer ScienceYangzhou UniversityYangzhouChina
  3. 3.National Key Lab of Novel Software TechNanjing UniversityNanjingChina

Personalised recommendations