Predicting Protein Subcellular Localization by Fusing Binary Tree and Error-Correcting Output Coding

  • Lili Guo
  • Yuehui Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7389)


In this paper, a new method was applied to predict the protein subcellular localization. The features used in the paper were the Distance frequency (DF), the Physical and chemical composition (PCC) and the Pseudo Amino Acid composition (PseAA). The classifier was integrated by Binary tree and Error-Correcting Output Coding (ECOC) based six Artifical neural networks (ANN). The prediction ability was evaluated by 5-jackknife cross-validation. By comparing its results with other methods, such as Lei-SVM and ESVM, the experimental result demonstrated that our method outperformed their predictions, and indicate the new approach is feasible and effective.


subcellular localization feature extraction Binary tree ECOC ANN ensemble classifier 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deng, M., Zhang, K., Mehta, S., Chen, T., Sun, F.: Prediction of Protein Function Using Protein–protein Interaction Data. Journal of Computational Biology 10, 947–960 (2003)CrossRefGoogle Scholar
  2. 2.
    Boden, M., Teasdale, R.D.: Determining Nucleolar Association from sequence by Leveraging Protein-protein Interactions. Journal of Computational Biology 15, 291–304 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Lei, Z., Dai, Y.: An SVM-based System for Predicting Protein Subnuclear Localizations. BMC Bioinformatics 6, 291–298 (2005)CrossRefGoogle Scholar
  4. 4.
    Pánek, J., Eidhammer, I., Aasland, R.: A New Method for Identification of Protein (Sub) Families in a Set of Proteins Based on Hydropathy Distribution in Proteins. Proteins: Struct. Funct. Bioinformatics 558, 923–934 (2005)Google Scholar
  5. 5.
    Chen, Y.L., Li, Q.Z.: Prediction of the Subcellular Location of Apoptosis Proteins. J. Theor. Biol. 245, 775–783 (2007)CrossRefGoogle Scholar
  6. 6.
    Zhang, L., Liao, B., Li, D.C., Zhu, W.: A Novel Representation for Apoptosis Protein Subcellular Localization Prediction Using Support Vector Machine. J. Theor. Biol. 259, 361–365 (2009)CrossRefGoogle Scholar
  7. 7.
    Shi, J.Y., Zhang, S.W., Pan, Q., Cheng, Y.M., Xie, J.: SVM-based Method for Subcellular Localization of Protein Using Multi-scale Energy and Pseudo Amino Acid Composition. Amino Acids 33(1), 69–74 (2007)CrossRefGoogle Scholar
  8. 8.
    Chou, K.C.: Prediction of Protein Cellular Attributes Using Pseudo-amino Acid Compositio. Proteins. Struct. Funct. Genet. 43(3), 246–255 (2001)CrossRefGoogle Scholar
  9. 9.
    Zhang, S., Huang, B., Xia, X., et al.: Bioinformatics Research in Subcellular Localization of Protein. Prog. Biochem. Biophys. 34(6), 573–579 (2007)Google Scholar
  10. 10.
    Huang, Y., Li, Y.D.: Prediction of Protein Subcellular Locations Using Fuzzy K-NN method. Bioinformatics 20(1), 21–28 (2004)CrossRefGoogle Scholar
  11. 11.
    Dietterich, T.G., Bakiri, G.: Solving Multiclass Learning Problems via Error-Correcting Output Codes. Artificial Intelligence Research (2), 263–286 (1995)Google Scholar
  12. 12.
    Luo, D., Xiong, R.: Distance Function Learning in Error-Correcting Output Coding Framework. In: King, I., Wang, J., Chan, L.-W., Wang, D. (eds.) ICONIP 2006, Part II. LNCS, vol. 4233, pp. 1–10. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Masulli, F., Valentini, G.: Effectiveness of Error Correcting Output Codes in Multiclass Learning Problems. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 107–116. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Chou, K.C., Zhang, C.T.: Review: Prediction of Protein Structural Classes. Crit. Rev. Biochem. Mol. Biol. 30, 275–349 (1995)CrossRefGoogle Scholar
  15. 15.
    Chen, C., Chen, L., Zou, X., Cai, P.: Prediction of Protein Secondary Structure Content by Using the Concept of Chou’s Pseudo-amino Acid Composition and Support Vector Machine. Protein Pept. Lett. 16, 27–31 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lili Guo
    • 1
    • 2
  • Yuehui Chen
    • 1
    • 2
  1. 1.Computational Intelligence Lab, School of Information Science and EngineeringUniversity of JinanJinanP.R.China
  2. 2.Shandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinanP.R.China

Personalised recommendations