Skip to main content

Protein-Protein Binding Affinity Prediction Based on an SVR Ensemble

  • Conference paper
Intelligent Computing Technology (ICIC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7389))

Included in the following conference series:

Abstract

Accurately predicting generic protein-protein binding affinities (PPBA) is essential to analyze the outputs of protein docking and may help infer real status of cellular protein-protein interaction sub-networks. However, accurate PPBA prediction is still extremely challenging. Machine learning methods are promising to address this problem. We propose a two-layer support vector regression (TLSVR) model to implicitly capture binding contributions that are hard to explicitly model. The TLSVR circumvents both the descriptor compatibility problem and the need for problematic modeling assumptions. Input features for TLSVR in first layer are scores of 2209 interacting atom pairs within each distance bin. The base SVRs are combined by the second layer to infer the final affinities. Leave-one-out validation on our heterogeneous data shows that the TLSVR method obtains a very good result of R=0.80 and SD=1.32 with real affinities. Comparison experiment further demonstrates that TLSVR is superior to the previous state-of-art methods in predicting generic PPBA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kollman, P.A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D.A., Cheatham, T.E.: 3rd: Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models. Acc. Chem. Res. 33, 889–897 (2000)

    Article  Google Scholar 

  2. Bohm, H.J.: Prediction of Binding Constants of Protein Ligands: a Fast Method for the Prioritization of Hits Obtained from De Novo Design or 3D Database Search Programs. J. Comput. Aided Mol. Des. 12, 309–323 (1998)

    Article  Google Scholar 

  3. Melo, F., Feytmans, E.: Novel Knowledge-based Mean force Potential at Atomic Level. J. Mol. Biol. 267, 207–222 (1997)

    Article  Google Scholar 

  4. Su, Y., Zhou, A., Xia, X., Li, W., Sun, Z.: Quantitative Prediction of Protein-protein Binding Affinity with a Potential of Mean Force Considering Volume Correction. Protein Sci. 18, 2550–2558 (2009)

    Article  Google Scholar 

  5. Lu, H., Lu, L., Skolnick, J.: Development of Unified Statistical Potentials Describing Protein-protein Interactions. Biophysical Journal 84, 1895–1901 (2003)

    Article  Google Scholar 

  6. Muegge, I.: PMF Scoring Revisited. J. Med. Chem. 49, 5895–5902 (2006)

    Article  Google Scholar 

  7. Englebienne, P., Moitessier, N.: Docking Ligands into Flexible and Solvated Macromolecules. 4. Are Popular Scoring Functions Accurate for this Class of Proteins? Journal of Chemical Information and Modeling 49, 1568–1580 (2009)

    Article  Google Scholar 

  8. Oda, A., Tsuchida, K., Takakura, T., Yamaotsu, N., Hirono, S.: Comparison of Consensus Scoring Strategies for Evaluating Computational Models of Protein-ligand Complexes. Journal of Chemical Information and Modeling 46, 380–391 (2006)

    Article  Google Scholar 

  9. Kastritis, P.L., Bonvin, A.M.J.J.: Are Scoring Functions in Protein-Protein Docking Ready To Predict Interactomes? Clues from a Novel Binding Affinity Benchmark. Journal of Proteome Research 9, 2216–2225 (2010)

    Article  Google Scholar 

  10. Li, X.-L., Hou, M.-L., Wang, S.-L.: A Residual Level Potential of Mean Force Based Approach to Predict Protein-Protein Interaction Affinity. In: Huang, D.-S., Zhao, Z., Bevilacqua, V., Figueroa, J.C. (eds.) ICIC 2010. LNCS, vol. 6215, pp. 680–686. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Wolpert, D.H.: Stacked Generalization. Neural Network 5, 241–259 (1992)

    Article  Google Scholar 

  12. Xia, J.-F., Zhao, X.-M., Huang, D.-S.: Predicting Protein-protein Interactions from Protein Sequences Using Meta Predictor. Amino. Acids 39, 1595–1599

    Google Scholar 

  13. Teramoto, R., Kashima, H.: Prediction of Protein-ligand Binding Affinities Using Multiple Instance Learning. Journal of Molecular Graphics and Modelling 29, 492–497

    Google Scholar 

  14. Ballester, P.J., Mitchell, J.B.O.: A Machine Learning Approach to Predicting Protein-ligand Binding Affinity with Applications to Molecular Docking. Bioinformatics 26, 1169–1175 (2010)

    Article  Google Scholar 

  15. Li, X.-L., Wang, S.-L.: A Comparative Study on Feature Selection in Regression for Predicting the Affinity of TAP Binding Peptides. In: Huang, D.-S., Zhang, X., Reyes García, C.A., Zhang, L. (eds.) ICIC 2010. LNCS, vol. 6216, pp. 69–75. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Li, X.L., Wang, S.L., Hou, M.L.: Specificity of Transporter Associated with Antigen Processing Protein as Revealed by Feature Selection Method. Protein and Peptide Letters 17, 1129–1135 (2010)

    Article  Google Scholar 

  17. Wang, R.X., Fang, X.L., Lu, Y.P., Wang, S.M.: The PDBbind Database: Collection of Binding Affinities for Protein-ligand Complexes with Known Three-dimensional Structures. Journal of Medicinal Chemistry 47, 2977–2980 (2004)

    Article  Google Scholar 

  18. Wang, R.X., Fang, X.L., Lu, Y.P., Yang, C.Y., Wang, S.M.: The PDBbind Database: Methodologies and Updates. Journal of Medicinal Chemistry 48, 4111–4119 (2005)

    Article  Google Scholar 

  19. Vapnik, V.N.: Statistical learning theory. Springer, New York (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, X., Zhu, M., Li, X., Wang, HQ., Wang, S. (2012). Protein-Protein Binding Affinity Prediction Based on an SVR Ensemble. In: Huang, DS., Jiang, C., Bevilacqua, V., Figueroa, J.C. (eds) Intelligent Computing Technology. ICIC 2012. Lecture Notes in Computer Science, vol 7389. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31588-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31588-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31587-9

  • Online ISBN: 978-3-642-31588-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics