Skip to main content

Distributed Algorithms for Network Diameter and Girth

  • Conference paper
Automata, Languages, and Programming (ICALP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7392))

Included in the following conference series:

Abstract

This paper considers the problem of computing the diameter D and the girth g of an n-node network in the CONGEST distributed model. In this model, in each synchronous round, each vertex can transmit a different short (say, O(logn) bits) message to each of its neighbors. We present a distributed algorithm that computes the diameter of the network in O(n) rounds. We also present two distributed approximation algorithms. The first computes a 2/3 multiplicative approximation of the diameter in \(O(D\sqrt n \log n)\) rounds. The second computes a 2 − 1/g multiplicative approximation of the girth in \(O(D+\sqrt{gn}\log n)\) rounds. Recently, Frischknecht, Holzer and Wattenhofer [11] considered these problems in the CONGEST model but from the perspective of lower bounds. They showed an \(\tilde{\Omega}(n)\) rounds lower bound for exact diameter computation. For diameter approximation, they showed a lower bound of \(\tilde{\Omega}(\sqrt n)\) rounds for getting a multiplicative approximation of . Both lower bounds hold for networks with constant diameter. For girth approximation, they showed a lower bound of \(\tilde{\Omega}(\sqrt n)\) rounds for getting a multiplicative approximation of on a network with constant girth. Our exact algorithm for computing the diameter matches their lower bound. Our diameter and girth approximation algorithms almost match their lower bounds for constant diameter and for constant girth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167–1181 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Almeida, P.S., Baquero, C., Cunha, A.: Fast distributed computation of distances in networks. Technical report (2011)

    Google Scholar 

  3. Antonio, J.K., Huang, G.M., Tsai, W.K.: A fast distributed shortest path algorithm for a class of hierarchically clustered data networks. IEEE Trans. Computers 41, 710–724 (1992)

    Article  Google Scholar 

  4. Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and all-pairs small stretch paths. In: FOCS, pp. 591–602. IEEE Computer Society (2006)

    Google Scholar 

  5. Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Petricola, A.: Partially dynamic algorithms for distributed shortest paths and their experimental evaluation. J. Computers 2, 16–26 (2007)

    Google Scholar 

  6. Cidon, I., Jaffe, J.M., Sidi, M.: Local distributed deadlock detection by cycle detection and clustering. IEEE Trans. Software Eng. 13(1), 3–14 (1987)

    Article  MATH  Google Scholar 

  7. Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math., 269–271 (1959)

    Google Scholar 

  8. Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. SIAM J. Comput. 29(5), 1740–1759 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elkin, M.: Computing almost shortest paths. ACM Transactions on Algorithms 1(2), 283–323 (2005)

    Article  MathSciNet  Google Scholar 

  10. Floyd, R.W.: Algorithm 97: shortest path. Comm. ACM 5, 345 (1962)

    Article  Google Scholar 

  11. Frischknecht, S., Holzer, S., Wattenhofer, R.: Networks cannot compute their diameter in sublinear time. In: Proc. 23rd ACM-SIAM Symp. on Discrete Algorithms, SODA (2012)

    Google Scholar 

  12. Haldar, S.: An ’all pairs shortest paths’ distributed algorithm using 2n 2 messages. J. Algorithms, 20–36 (1997)

    Google Scholar 

  13. Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest paths and applications. In: Proc. 31st Annual ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing, PODC (2012)

    Google Scholar 

  14. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Computing 7(4), 413–423 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kanchi, S., Vineyard, D.: Time optimal distributed all pairs shortest path problem. Int. J. of Information Theories and Applications, 141–146 (2004)

    Google Scholar 

  16. Kavitha, T., Liebchen, C., Mehlhorn, K., Michail, D., Rizzi, R., Ueckerdt, T., Zweig, K.A.: Cycle bases in graphs characterization, algorithms, complexity, and applications. Computer Science Review 3(4), 199–243 (2009)

    Article  Google Scholar 

  17. Krivelevich, M., Nutov, Z., Yuster, R.: Approximation algorithms for cycle packing problems. In: Proc. SODA, pp. 556–561 (2005)

    Google Scholar 

  18. Lingas, A., Lundell, E.-M.: Efficient approximation algorithms for shortest cycles in undirected graphs. Inf. Process. Lett. 109(10), 493–498 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)

    Google Scholar 

  20. Roditty, L., Tov, R.: Approximating the girth. In: Proc. SODA, pp. 1446–1454 (2011)

    Google Scholar 

  21. Roditty, L., Vassilevska Williams, V.: Minimum weight cycles and triangles: Equivalences and algorithms. In: Proc. FOCS, pp. 180–189 (2011)

    Google Scholar 

  22. Roditty, L., Vassilevska Williams, V.: Subquadratic time approximation algorithms for the girth. In: SODA, pp. 833–845 (2012)

    Google Scholar 

  23. Segall, A.: Distributed network protocols. IEEE Trans. Inf. Th. IT-29, 23–35 (1983)

    Article  MathSciNet  Google Scholar 

  24. Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs. JCSS 51, 400–403 (1995)

    MathSciNet  Google Scholar 

  25. Warshall, S.: A theorem on boolean matrices. J. ACM 9(1), 11–12 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vassilevska Williams, V.: Private communication

    Google Scholar 

  27. Vassilevska Williams, V.: Breaking the coppersmith-winograd barrier. In: STOC (2012)

    Google Scholar 

  28. Yuster, R.: Computing the diameter polynomially faster than apsp. CoRR, abs/1011.6181 (2010)

    Google Scholar 

  29. Zwick, U.: All pairs shortest paths using bridging sets and rectangular matrix multiplication. JACM 49(3), 289–317 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peleg, D., Roditty, L., Tal, E. (2012). Distributed Algorithms for Network Diameter and Girth. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31585-5_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31585-5_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31584-8

  • Online ISBN: 978-3-642-31585-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics