Real-Time Multi-view Human Motion Tracking Using Particle Swarm Optimization with Resampling

  • Bogdan Kwolek
  • Tomasz Krzeszowski
  • André Gagalowicz
  • Konrad Wojciechowski
  • Henryk Josinski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7378)


In this paper we propose a particle swarm optimization with resampling for marker-less body tracking. The resampling is employed to select a record of the best particles according to the weights of particles making up the swarm. The algorithm better copes with noise and reduces the premature stagnation. Experiments on 4-camera datasets show the robustness and accuracy of our method. It was evaluated on nine sequences using ground truth provided by Vicon. The full body motion tracking was conducted in real-time on two PC nodes, each of them with two multi-core CPUs with hyper-threading, connected by 1 GigE.


Particle Swarm Optimization Human Motion Motion Capture Good Particle Body Tracking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barris, S., Button, C.: A review of vision-based motion analysis in sport. Sports Medicine 38(12), 1025–1043 (2008)CrossRefGoogle Scholar
  2. 2.
    Chapman, B., Jost, G., van der Pas, R., Kuck, D.: Using OpenMP: Portable Shared Memory Parallel Programming. The MIT Press (2007)Google Scholar
  3. 3.
    Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Tr. Evolut. Comp. 6(1), 58–73 (2002)CrossRefGoogle Scholar
  4. 4.
    Coello, C., Pulido, G., Lechuga, M.: Handling multiple objectives with particle swarm optimization. IEEE Tr. on Evolutionary Computation 8(3), 256–279 (2004)CrossRefGoogle Scholar
  5. 5.
    Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. In: IEEE Int. Conf. on Pattern Recognition, pp. 126–133 (2000)Google Scholar
  6. 6.
    Dyer, S., Martin, J., Zulauf, J.: Motion capture white paper. SGI, (accessed March 15, 2012)
  7. 7.
    Isard, M., Blake, A.: CONDENSATION - conditional density propagation for visual tracking. Int. J. of Computer Vision 29, 5–28 (2006)CrossRefGoogle Scholar
  8. 8.
    John, V., Trucco, E., Ivekovic, S.: Markerless human articulated tracking using hierarchical particle swarm optimisation. Image Vis. Comput. 28, 1530–1547 (2010)CrossRefGoogle Scholar
  9. 9.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of IEEE Int. Conf. on Neural Networks, pp. 1942–1948. IEEE Press, Piscataway (1995)CrossRefGoogle Scholar
  10. 10.
    Kwolek, B., Krzeszowski, T., Wojciechowski, K.: Real-Time Multi-view Human Motion Tracking Using 3D Model and Latency Tolerant Parallel Particle Swarm Optimization. In: Gagalowicz, A., Philips, W. (eds.) MIRAGE 2011. LNCS, vol. 6930, pp. 169–180. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Kwolek, B., Krzeszowski, T., Wojciechowski, K.: Swarm Intelligence Based Searching Schemes for Articulated 3D Body Motion Tracking. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2011. LNCS, vol. 6915, pp. 115–126. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. CVIU 104(2), 90–126 (2006)Google Scholar
  13. 13.
    Poppe, R.: Vision-based human motion analysis: An overview. Comp. Vision and Image Understanding 108(1-2), 4–18 (2007)CrossRefGoogle Scholar
  14. 14.
    Quah, C.K., Koh, M., Ong, A., Seah, H.S., Gagalowicz, A.: Video-based motion capture for measuring human movement. In: Digital Sports for Performance Enhancement and Competitive Evolution: Intelligent Gaming Technologies, pp. 209–228. Information Science Publishing (2009)Google Scholar
  15. 15.
    Saboune, J., Charpillet, F.: Markerless human motion capture for gait analysis. Clinical Orthopaedics and Related Research (2005)Google Scholar
  16. 16.
    Sigal, L., Balan, A., Black, M.: HumanEva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. Int. Journal of Computer Vision 87, 4–27 (2010)CrossRefGoogle Scholar
  17. 17.
    Zhang, X., Hu, W., Wang, X., Kong, Y., Xie, N., Wang, H., Ling, H., Maybank, S.: A swarm intelligence based searching strategy for articulated 3D human body tracking. In: IEEE Workshop on 3D Information Extraction for Video Analysis and Mining in conjuction with CVPR, pp. 45–50. IEEE (2010)Google Scholar
  18. 18.
    Zhou, H., Hu, H.: Human motion tracking for rehabilitation - a survey. Biomedical Signal Proc. and Control 3, 1–18 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bogdan Kwolek
    • 3
    • 2
  • Tomasz Krzeszowski
    • 3
    • 2
  • André Gagalowicz
    • 1
  • Konrad Wojciechowski
    • 2
  • Henryk Josinski
    • 2
  1. 1.INRIA Paris-RocquencourtRocquencourtFrance
  2. 2.Polish-Japanese Institute of Information TechnologyWarszawaPoland
  3. 3.Rzeszów University of TechnologyRzeszówPoland

Personalised recommendations