Advertisement

Modeling Deformable Filament Bundles by Means of Mass-Spring Systems for the Design of Carbon Reinforced Materials

  • Alejandro Mesejo-Chiong
  • Angela León-Mecías
  • Patrick Shiebel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7378)

Abstract

The construction and design of textile reinforcement elements offer great potential for efficient production of load-designed components out of fiber reinforced composites materials.

Tailored fiber placement (TFP) is a promising new technology that contributes to the development of carbon fiber reinforced composites by reducing structural weight at safe design. The TFP process allows a filament bundle positioning in almost any orientation. This way the fiber reinforcement can be aligned as closely as possible to the optimal mechanical direction. However, the flexibility of orientation can result in high deformation grades of the filament bundles; this may result in vulnerable regions of the fiber’s reinforced structure.

This contribution presents a mass-spring system for physical numerical simulation of the three-dimensional deformation behavior experienced by carbon-tows by the TFP process including filament interaction and collision. Trough simulation we attempt to predict the deformation grade of the filament bundles by the TFP process. The advantages and shortcomings of this approach are presented by numerical results obtained for different number of filaments in the bundle.

Keywords

physics based modeling mass-spring system filament bundle simulation collision detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bando, Y., Chen, B.-Y., Nishita, T.: Animating Hair with Loosely Connected Particles. In: Brunet, P., Fellner, D. (eds.) Eurographics 2003, vol. 22(3), The Eurographics Association and Blackwell Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA 02148 (2003)Google Scholar
  2. 2.
    Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., Grinspun, E.: Discrete Elastic Rods. ACM Transactions on Graphics 27(3), Article 63, 12 pages (2008)CrossRefGoogle Scholar
  3. 3.
    Bertails, F., Basile, A., Querleux, B., Leroy, F., Lévêque, J.-L., Cani, M.-P.: Predicting Natural Hair Shapes by Solving the Statics of Flexible Rods. In: Dingliana, J., Ganovelli, F. (Guest eds.) Eurographics 2005. Short Presentation. The Eurographics Association and Blackwell Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA 02148 (2005)Google Scholar
  4. 4.
    da Fonseca, A.F., de Aguiar, M.A.: Solving the boundary value problem for finite Kirchhoff rods. Physica D 181, 53–69 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Gliesche, K., Orawetz, H.: Nutzung des Tailored Fibre Placement Verfahrens zur Low-cost-Herstellung von beanspruchungsgerechten Spantstrukturen. Präsentation des Institut für Polymerforschung e. V. Dresden auf dem Critical Design Review des Verbundprojektes EMIR CFK-Rumpf, Bremen (2004)Google Scholar
  6. 6.
    Grègoire, M., Schömer, E.: Interactive simulation of one-dimensional flexible parts. Computer-Aided Design 39, 694–707 (2007)CrossRefGoogle Scholar
  7. 7.
    Hergenröther, H., Dähne, P.: Real-time virtual cables based on kinematic simulation. In: 8th International Conference in Central Europe on Computer Graphics, Visualization and Interactive Digital Media, Conference Proceedings, University of West Bohemia, Pilsen, pp. 402–409 (2000)Google Scholar
  8. 8.
    Loock, A., Schömer, E.: A Virtual Environment for Interactive Assembly Simulation: From Rigid Bodies to Deformable Cables. Research Report. Computer Science Department of the Universität des Saarlandes (2002)Google Scholar
  9. 9.
    Mattheij, P., Gliesche, K., Feltin, D.: Tailored Fiber Placement-Mechanical Properties and Applications. Journal of Reinforced Plastics and Composites 17, 774 (1998), doi:10.1177/073168449801700901Google Scholar
  10. 10.
    Pai, D.K.: Interactive Simulation of Thin Solids using Cosserat Models. In: Drettakis, G., Seidel, H.-P. (Guest eds.) Eurographics 2002, vol. 21(3). The Eurographics Association and Blackwell Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA 02148 (2002)Google Scholar
  11. 11.
    Plath, J.: Realistic modeling of textiles using interacting particle systems. Computers & Graphics 24, 897–905 (2000)CrossRefGoogle Scholar
  12. 12.
    Selle, A., Lentine, M., Fedkiw, R.: A Mass Spring Model for Hair Simulation. ACM Transactions on Graphics 27(3), Article 64, 11 pages (2008)CrossRefGoogle Scholar
  13. 13.
    Temmen, H., Degenhardt, R., Raible, T.: Tailored Fiber Placement optimization Tool. In: 25th International Congress of Aeronautical Sciences (2006), http://www.dlr.de/fa/Portaldata/17/Resources

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alejandro Mesejo-Chiong
    • 1
  • Angela León-Mecías
    • 1
  • Patrick Shiebel
    • 2
  1. 1.Faculty of Mathematics and Computer ScienceUniversity of HavanaHavanaCuba
  2. 2.Faserinstitut Bremen e.V.BremenGermany

Personalised recommendations