Skip to main content

Compression Techniques for 3D Video Mesh Sequences

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7378))

Abstract

This paper approaches the problem of compressing temporally consistent 3D video mesh sequences with the aim of reducing the storage cost. We present an evaluation of compression techniques which apply Principal Component Analysis to the representation of the mesh in different domain spaces, and demonstrate the applicability of mesh deformation algorithms for compression purposes. A novel layered mesh representation is introduced for compression of 3D video sequences with an underlying articulated motion, such as a person with loose clothing. Comparative evaluation on captured mesh sequences of people demonstrates that this representation achieves a significant improvement in compression compared to previous techniques. Results show a compression ratio of 8-15 for an RMS error of less than 5mm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.P., Thrun, S.: Performance capture from sparse multi-view video. In: ACM SIGGRAPH 2008 Papers (2008)

    Google Scholar 

  2. Alexa, M., Müller, W.: Representing Animations by Principal Components. In: EUROGRAPHICS (2000)

    Google Scholar 

  3. Amjoun, R., Straßer, W.: Efficient compression of 3D dynamic mesh sequences. Journal of the WSCG 15, 99–106 (2007)

    Google Scholar 

  4. Baran, I., Popović, J.: Automatic rigging and animation of 3D characters. ACM Trans. Graph. 26 (2007)

    Google Scholar 

  5. Botsch, M., Sorkine, O.: On Linear Variational Surface Deformation Methods. IEEE Trans. on Visualization and Computer Graphics 14(1), 213–230 (2008)

    Article  Google Scholar 

  6. Carranza, J., Theobalt, C., Magnor, M.A., Seidel, H.P.: Free-viewpoint video of human actors. In: ACM SIGGRAPH 2003 Papers, pp. 569–577 (2003)

    Google Scholar 

  7. Collins, G., Hilton, A.: A rigid transform basis for animation compression and level of detail. In: Vision, Video and Graphics (2005)

    Google Scholar 

  8. Collins, G., Hilton, A.: Spatio-Temporal Fusion of Multiple View Video Rate 3D Surfaces. In: Proceedings of the Fifth International Conference on 3-D Digital Imaging and Modeling, pp. 142–149. IEEE Computer Society (2005)

    Google Scholar 

  9. Hoppe, H.: Progressive meshes. In: ACM SIGGRAPH 1996 Papers, pp. 99–108 (1996)

    Google Scholar 

  10. Huang, P., Budd, C., Hilton, A.: Global temporal registration of multiple non-rigid surface sequences. In: IEEE CVPR 2011, pp. 3473–3480 (2011)

    Google Scholar 

  11. Ibarria, L., Rossignac, J.: Dynapack: space-time compression of the 3D animations of triangle meshes with fixed connectivity. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 126–135 (2003)

    Google Scholar 

  12. Kanade, T., Rander, P., Narayanan, P.J.: Virtualized Reality: Constructing Virtual Worlds from Real Scenes. IEEE MultiMedia 4(1), 34–47 (1997)

    Article  Google Scholar 

  13. Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: ACM SIGGRAPH 2000 Papers, pp. 279–286 (2000)

    Google Scholar 

  14. Karni, Z., Gotsman, C.: Compression of soft-body animation sequences. Computers & Graphics 28(1), 25–34 (2004)

    Article  Google Scholar 

  15. Khodakovsky, A., Schröder, P., Sweldens, W.: Progressive geometry compression. In: SIGGRAPH 2000 Papers, pp. 271–278 (2000)

    Google Scholar 

  16. Kircher, S., Garland, M.: Free-form motion processing. ACM Trans. Graph. 27(2), 1–13 (2008)

    Article  Google Scholar 

  17. Lee, A., Moreton, H., Hoppe, H.: Displaced subdivision surfaces. In: ACM SIGGRAPH 2000 Papers, pp. 85–94 (2000)

    Google Scholar 

  18. Lengyel, J.E.: Compression of time-dependent geometry. In: Proceedings of the 1999 Symposium on Interactive 3D Graphics, New York, NY, USA, pp. 89–95 (1999)

    Google Scholar 

  19. Muller, K., Smolic, A., Kautzner, M., Eisert, P., Wiegand, T.: Predictive compression of dynamic 3D meshes. In: IEEE International Conference on Image Processing, vol. 1, pp. I–621–4 (2005)

    Google Scholar 

  20. Or, D.C., Levin, D., Remez, O.: Progressive Compression of Arbitrary Triangular Meshes. In: Proceedings of the 10th IEEE Visualization 1999 Conference, VIS 1999 (1999)

    Google Scholar 

  21. Sattler, M., Sarlette, R., Klein, R.: Simple and efficient compression of animation sequences. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 209–217 (2005)

    Google Scholar 

  22. Shamir, A., Pascucci, V., Bajaj, C.: Multi-Resolution Dynamic Meshes with Arbitrary Deformations. In: Procs. of the Conference on Visualization 2000, pp. 423–430 (2000)

    Google Scholar 

  23. Sorkine, O.: Differential Representations for Mesh Processing. Computer Graphics Forum 25(4), 789–807 (2006)

    Article  Google Scholar 

  24. Starck, J., Hilton, A.: Surface Capture for Performance-Based Animation. IEEE Computer Graphics and Applications 27(3), 21–31 (2007)

    Article  Google Scholar 

  25. Stefanoski, N., Ostermann, J.: SPC: Fast and Efficient Scalable Predictive Coding of Animated Meshes. Computer Graphics Forum 29(1), 101–116 (2010)

    Article  Google Scholar 

  26. Stoll, C., de Aguiar, E., Theobalt, C., Seidel, H.P.: A Volumetric Approach to Interactive Shape Editing. Tech. rep., Max-Planck-Institut fur Informatik (2007)

    Google Scholar 

  27. Sumner, R.W., Zwicker, M., Gotsman, C., Popović, J.: Mesh-based inverse kinematics. In: ACM SIGGRAPH 2005 Papers, pp. 488–495 (2005)

    Google Scholar 

  28. Tejera, M., Hilton, A.: Space-time editing of 3D video sequences. In: Conference on Visual Media Production, pp. 148–157 (2011)

    Google Scholar 

  29. Touma, C., Gotsman, C.: Triangle mesh compression. In: Graphics Interface (1998)

    Google Scholar 

  30. Xu, W., Zhou, K., Yu, Y., Tan, Q., Peng, Q., Guo, B.: Gradient domain editing of deforming mesh sequences. ACM Trans. Graph. 26 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tejera, M., Hilton, A. (2012). Compression Techniques for 3D Video Mesh Sequences. In: Perales, F.J., Fisher, R.B., Moeslund, T.B. (eds) Articulated Motion and Deformable Objects. AMDO 2012. Lecture Notes in Computer Science, vol 7378. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31567-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31567-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31566-4

  • Online ISBN: 978-3-642-31567-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics