Advertisement

Compression Techniques for 3D Video Mesh Sequences

  • Margara Tejera
  • Adrian Hilton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7378)

Abstract

This paper approaches the problem of compressing temporally consistent 3D video mesh sequences with the aim of reducing the storage cost. We present an evaluation of compression techniques which apply Principal Component Analysis to the representation of the mesh in different domain spaces, and demonstrate the applicability of mesh deformation algorithms for compression purposes. A novel layered mesh representation is introduced for compression of 3D video sequences with an underlying articulated motion, such as a person with loose clothing. Comparative evaluation on captured mesh sequences of people demonstrates that this representation achieves a significant improvement in compression compared to previous techniques. Results show a compression ratio of 8-15 for an RMS error of less than 5mm.

Keywords

compression 3D video PCA Laplacian deformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.P., Thrun, S.: Performance capture from sparse multi-view video. In: ACM SIGGRAPH 2008 Papers (2008)Google Scholar
  2. 2.
    Alexa, M., Müller, W.: Representing Animations by Principal Components. In: EUROGRAPHICS (2000)Google Scholar
  3. 3.
    Amjoun, R., Straßer, W.: Efficient compression of 3D dynamic mesh sequences. Journal of the WSCG 15, 99–106 (2007)Google Scholar
  4. 4.
    Baran, I., Popović, J.: Automatic rigging and animation of 3D characters. ACM Trans. Graph. 26 (2007)Google Scholar
  5. 5.
    Botsch, M., Sorkine, O.: On Linear Variational Surface Deformation Methods. IEEE Trans. on Visualization and Computer Graphics 14(1), 213–230 (2008)CrossRefGoogle Scholar
  6. 6.
    Carranza, J., Theobalt, C., Magnor, M.A., Seidel, H.P.: Free-viewpoint video of human actors. In: ACM SIGGRAPH 2003 Papers, pp. 569–577 (2003)Google Scholar
  7. 7.
    Collins, G., Hilton, A.: A rigid transform basis for animation compression and level of detail. In: Vision, Video and Graphics (2005)Google Scholar
  8. 8.
    Collins, G., Hilton, A.: Spatio-Temporal Fusion of Multiple View Video Rate 3D Surfaces. In: Proceedings of the Fifth International Conference on 3-D Digital Imaging and Modeling, pp. 142–149. IEEE Computer Society (2005)Google Scholar
  9. 9.
    Hoppe, H.: Progressive meshes. In: ACM SIGGRAPH 1996 Papers, pp. 99–108 (1996)Google Scholar
  10. 10.
    Huang, P., Budd, C., Hilton, A.: Global temporal registration of multiple non-rigid surface sequences. In: IEEE CVPR 2011, pp. 3473–3480 (2011)Google Scholar
  11. 11.
    Ibarria, L., Rossignac, J.: Dynapack: space-time compression of the 3D animations of triangle meshes with fixed connectivity. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 126–135 (2003)Google Scholar
  12. 12.
    Kanade, T., Rander, P., Narayanan, P.J.: Virtualized Reality: Constructing Virtual Worlds from Real Scenes. IEEE MultiMedia 4(1), 34–47 (1997)CrossRefGoogle Scholar
  13. 13.
    Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: ACM SIGGRAPH 2000 Papers, pp. 279–286 (2000)Google Scholar
  14. 14.
    Karni, Z., Gotsman, C.: Compression of soft-body animation sequences. Computers & Graphics 28(1), 25–34 (2004)CrossRefGoogle Scholar
  15. 15.
    Khodakovsky, A., Schröder, P., Sweldens, W.: Progressive geometry compression. In: SIGGRAPH 2000 Papers, pp. 271–278 (2000)Google Scholar
  16. 16.
    Kircher, S., Garland, M.: Free-form motion processing. ACM Trans. Graph. 27(2), 1–13 (2008)CrossRefGoogle Scholar
  17. 17.
    Lee, A., Moreton, H., Hoppe, H.: Displaced subdivision surfaces. In: ACM SIGGRAPH 2000 Papers, pp. 85–94 (2000)Google Scholar
  18. 18.
    Lengyel, J.E.: Compression of time-dependent geometry. In: Proceedings of the 1999 Symposium on Interactive 3D Graphics, New York, NY, USA, pp. 89–95 (1999)Google Scholar
  19. 19.
    Muller, K., Smolic, A., Kautzner, M., Eisert, P., Wiegand, T.: Predictive compression of dynamic 3D meshes. In: IEEE International Conference on Image Processing, vol. 1, pp. I–621–4 (2005)Google Scholar
  20. 20.
    Or, D.C., Levin, D., Remez, O.: Progressive Compression of Arbitrary Triangular Meshes. In: Proceedings of the 10th IEEE Visualization 1999 Conference, VIS 1999 (1999)Google Scholar
  21. 21.
    Sattler, M., Sarlette, R., Klein, R.: Simple and efficient compression of animation sequences. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 209–217 (2005)Google Scholar
  22. 22.
    Shamir, A., Pascucci, V., Bajaj, C.: Multi-Resolution Dynamic Meshes with Arbitrary Deformations. In: Procs. of the Conference on Visualization 2000, pp. 423–430 (2000)Google Scholar
  23. 23.
    Sorkine, O.: Differential Representations for Mesh Processing. Computer Graphics Forum 25(4), 789–807 (2006)CrossRefGoogle Scholar
  24. 24.
    Starck, J., Hilton, A.: Surface Capture for Performance-Based Animation. IEEE Computer Graphics and Applications 27(3), 21–31 (2007)CrossRefGoogle Scholar
  25. 25.
    Stefanoski, N., Ostermann, J.: SPC: Fast and Efficient Scalable Predictive Coding of Animated Meshes. Computer Graphics Forum 29(1), 101–116 (2010)CrossRefGoogle Scholar
  26. 26.
    Stoll, C., de Aguiar, E., Theobalt, C., Seidel, H.P.: A Volumetric Approach to Interactive Shape Editing. Tech. rep., Max-Planck-Institut fur Informatik (2007)Google Scholar
  27. 27.
    Sumner, R.W., Zwicker, M., Gotsman, C., Popović, J.: Mesh-based inverse kinematics. In: ACM SIGGRAPH 2005 Papers, pp. 488–495 (2005)Google Scholar
  28. 28.
    Tejera, M., Hilton, A.: Space-time editing of 3D video sequences. In: Conference on Visual Media Production, pp. 148–157 (2011)Google Scholar
  29. 29.
    Touma, C., Gotsman, C.: Triangle mesh compression. In: Graphics Interface (1998)Google Scholar
  30. 30.
    Xu, W., Zhou, K., Yu, Y., Tan, Q., Peng, Q., Guo, B.: Gradient domain editing of deforming mesh sequences. ACM Trans. Graph. 26 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Margara Tejera
    • 1
  • Adrian Hilton
    • 1
  1. 1.Centre for Vision, Speech and Signal ProcessingUniversity of SurreyGuildfordUK

Personalised recommendations