Advertisement

Granular Material Deposition for Simulation and Texturing

  • Seth Holladay
  • Parris Egbert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7378)

Abstract

Dry granular materials are commonly needed in visual effects. To simulate a material involving individual grains, every granule must first be settled into place by running a pre-simulation. This pre-simulation can take minutes or hours, and the resulting look can be difficult to control. We introduce a faster, more directable method for depositing particles. We scatter granules in the desired area, guaranteeing that they are interpenetrating, then push them apart by means of penetration resolution such that they are in contact but not overlapping. This results in a natural, aperiodic layout of granules that mimics settled granular materials with little cost to production time. We also introduce particle shaders, a method for generating granular detail at render time.

Keywords

Granular Material Discrete Element Method Discrete Element Method Simulation Resolution Step Random Close Packing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ammann, C., Bloom, D., Cohen, J., Courte, J., Flores, L., Hasegawa, S., Kalaitzidis, N., Tornberg, T., Treweek, L., Winter, B., Yang, C.: The Birth of Sandman. In: ACM SIGGRAPH 2007 Sketches (2007)Google Scholar
  2. 2.
    Bagi, K.: An Algorithm to Generate Random Dense Arrangements for Discrete Element Simulations of Granular Assemblies. Granular Matter 7, 31–43 (2005)zbMATHCrossRefGoogle Scholar
  3. 3.
    Albert-Lászlá, B., Harry, E.: Fractal Concepts in Surface Growth, pp. 77–86. Cambridge University Press (1995)Google Scholar
  4. 4.
    Bell, N., Yu, Y., Mucha, P.: Particle-based Simulation of Granular Materials. In: ACM SIGGRAPH/Eurographics Symp. on Computer Animation, pp. 28–55 (2005)Google Scholar
  5. 5.
    Berryman, J.: Random Close Packing of Hard Spheres and Disks. Physical Review A 27, 1053–1061 (1983)CrossRefGoogle Scholar
  6. 6.
    Bertrand, F., Leclaire, L., Levecque, G.: DEM-based models for the mixing of granular materials. Chemical Engineering Science 60, 2517–2531 (2005)CrossRefGoogle Scholar
  7. 7.
    Coumans, E.: Bullet Physics Library (2005), http://bulletphysics.org/wordpress
  8. 8.
    Cundall, P., Strack, O.: A Discrete Numerical Model for Granular Assemblies. Geotechnique 29, 47–65 (1979)CrossRefGoogle Scholar
  9. 9.
    Cundall, P.: A Computer Model for Simulating Progressive Large Scale Movements in Blocky Rock Systems. In: Symp. of the Intl. Soc. of Rock Mechanics (1971)Google Scholar
  10. 10.
    Fearing, P.: Computer modelling of fallen snow. Computer Graphics and Interactive Techniques 27, 37–46 (2000)Google Scholar
  11. 11.
    Feng, Y.: Filling Domains with Disks: An Advancing Front Approach. International Journal for Numerical Methods in Engineering 56, 699–713 (2003)zbMATHCrossRefGoogle Scholar
  12. 12.
    Geng, Y., Yu, H., McDowell, G.: Simulation of Granular Material Behaviour Using DEM. Procedia Earth and Planetary Science, 598–605 (2009)Google Scholar
  13. 13.
    Guendelman, E., Bridson, R., Fedkiw, R.: Nonconvex Rigid Bodies with Stacking. In: SIGGRAPH 2003 (2003)Google Scholar
  14. 14.
    Hsu, S., Keyser, J.: Piles of Objects. ACM SIGGRAPH Asia, 155:1–155:6 (2010)Google Scholar
  15. 15.
    Kaufman, D., Edmunds, T., Pai, D.: Fast Frictional Dynamics for Rigid Bodies. ACM Transactions on Graphics 24, 946–956 (2005)CrossRefGoogle Scholar
  16. 16.
    Kimmel, B., Baranoski, G.: Simulating the Appearance of Sandy Landscapes. Computers and Graphics 34, 441–448 (2010)CrossRefGoogle Scholar
  17. 17.
    Lagae, A., Dutré, P.: Poisson Sphere Distributions. In: Vision, Modeling and Visualization, pp. 373–379 (2006)Google Scholar
  18. 18.
    Legakis, J., Dorsey, J., Gortler, S.: Feature-based Cellular Texturing for Architectural Models. In: SIGGRAPH 2001 (2001)Google Scholar
  19. 19.
    Mehta, A., Luck, J., Berg, J., Barker, G.: Competition and Cooperation: Aspects of Dynamics in Sandpiles. Journal of Physics: Condensed Matter 17 (2005)Google Scholar
  20. 20.
    Mehta, A., Barker, G.: Vibrated Powders: A Microscopic Approach. Phys. Rev. Letters 67, 394–397 (1991)CrossRefGoogle Scholar
  21. 21.
    Kazunori, M.: A Method of Generating Stone Wall Patterns. Computer Graphics 24, 387–394 (1990)CrossRefGoogle Scholar
  22. 22.
    Panaitescu, A., Kudrolli, A.: Spatial distribution functions of random packed granular spheres obtained by direct particle imaging. Phys. Rev. E 81 (2010)Google Scholar
  23. 23.
    Peytavie, A., Galin, E., Grosjean, J., Merillou, S.: Procedural Generation of Rock Piles using Aperiodic Tiling. Pacific Graphics 28 (2009)Google Scholar
  24. 24.
    Sumner, R., O’brien, J., Hodgins, J.: Animating Sand, Mud and Snow. Computer Graphics Forum 18, 17–26 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Seth Holladay
    • 1
  • Parris Egbert
    • 1
  1. 1.Computer Science DepartmentBrigham Young UniversityUSA

Personalised recommendations