Lens Spaces

  • Sungbok Hong
  • John Kalliongis
  • Darryl McCullough
  • J. Hyam Rubinstein
Part of the Lecture Notes in Mathematics book series (LNM, volume 2055)


The Smale Conjecture is proven for all lens spaces other than L(2, 1), the real projective three-space. The method utilizes the Rubinstein–Scharlemann graphic, in this case comparing a sweepout obtained from a genus-1 Heegaard splitting of a lens space with its images under a parameterized family of diffeomorphisms. Examples show that the family may need to undergo a perturbation by a small homotopy, after which the graphic yields at each parameter a loop in the intersection of two Heegaard tori that is essential in each of them. Using methods of Hatcher for working with parameterized families of diffeomorphisms, these essential intersections eventually lead to a deformation of the family to preserve a fixed Seifert fibration of the lens space, and the Conjecture is deduced from this.Recall that we always use the term lens space to mean a three-dimensional lens space L(m, q) with \(m \geq 3\). In addition, we always select q so that \(1 \leq q < m/2\).In this chapter, we will prove Theorem 1.3, the Smale Conjecture for Lens Spaces. The argument is regrettably quite lengthy. It uses a lot of combinatorial topology, but draws as well on some mathematics unfamiliar to many low-dimensional topologists. We have already seen some of that material in earlier chapters, but we will also have to use the Rubinstein–Scharlemann method, reviewed in Sect. 5.6 , and some results from singularity theory, presented in Sect. 5.8 .The next section is a comprehensive outline of the entire proof. We hope that it will motivate the various technical complications that ensue.


Lens Space Sweepout Heegaard Splitting Smale Conjecture Strongly Irreducible 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aneziris, C., Balachandran, A.P., Bourdeau, M., Jo, S., Sorkin, R.D., Ramadas, T.R.: Aspects of spin and statistics in generally covariant theories. Int. J. Mod. Phys. A 4(20), 5459–5510 (1989)Google Scholar
  2. 2.
    Asano, K.: Homeomorphisms of prism manifolds. Yokohama Math. J. 26(1), 19–25 (1978)Google Scholar
  3. 3.
    Banyaga, A.: The structure of classical diffeomorphism groups. In: Mathematics and Its Applications, vol. 400. Kluwer Academic, Dordrecht (1997)Google Scholar
  4. 4.
    Bessaga, C., Pelczynski, A.: Selected topics in infinite-dimensional topology. In: Monografie Matematyczne, Tom 58 [Mathematical Monographs, vol. 58]. PWN—Polish Scientific Publishers, Warsaw (1975)Google Scholar
  5. 5.
    Boileau, M., Otal, J.P.: Scindements de Heegaard et groupe des homeotopies des petites varietes de Seifert. Invent. Math. 106(1), 85–107 (1991)Google Scholar
  6. 6.
    Bonahon, F.: Difféotopies des espaces lenticulaires. Topology 22(3), 305–314 (1983)Google Scholar
  7. 7.
    Bredon, G.E., Wood, J.W.: Non-orientable surfaces in orientable 3-manifolds. Invent. Math. 7, 83–110 (1969)Google Scholar
  8. 8.
    Bruce, J.W.: On transversality. Proc. Edinb. Math. Soc. (2) 29(1), 115–123 (1986)Google Scholar
  9. 9.
    Casson, A.J., Gordon, C.McA.: Reducing Heegaard splittings. Topology Appl. 27(3), 275–283 (1987)Google Scholar
  10. 10.
    Cerf, J.: Topologie de certains espaces de plongements. Bull. Soc. Math. Fr. 89, 227–380 (1961)Google Scholar
  11. 11.
    Cerf, J.: Sur les difféomorphismes de la sphere de dimension trois \(({\Gamma }_{4} = 0)\). In: Lecture Notes in Mathematics, vol. 53. Springer, Berlin (1968)Google Scholar
  12. 12.
    Charlap, L.S., Vasquez, A.T.: Compact flat riemannian manifolds. III. The group of affinities. Am. J. Math. 95, 471–494 (1973)Google Scholar
  13. 13.
    Filipkiewicz, R.P.: Isomorphisms between diffeomorphism groups. Ergod. Theor. Dyn. Syst. 2(2), 159–171 (1982)Google Scholar
  14. 14.
    Friedman, J., Sorkin, R.: Spin 1/2 from gravity. Phys. Rev. Lett. 44, 1100–1103 (1980)Google Scholar
  15. 15.
    Gabai, D.: The Smale conjecture for hyperbolic 3-manifolds: \(\mathrm{Isom}(\mathrm{{M}}^{3}) \simeq \mathrm{ Diff}(\mathrm{{M}}^{3})\). J. Differ. Geom. 58(1), 113–149 (2001)Google Scholar
  16. 16.
    Gibson, C.G., Wirthmuller, K., du Plessis, A.A., Looijenga, E.J.N.: Topological stability of smooth mappings. In: Lecture Notes in Mathematics, vol. 552. Springer, Berlin (1976)Google Scholar
  17. 17.
    Giulini, D.: On the configuration space topology in general relativity. Helv. Phys. Acta 68(1), 86–111 (1995)Google Scholar
  18. 18.
    Giulini, D., Louko, J.: No-boundary θ sectors in spatially flat quantum cosmology. Phys. Rev. D (3) 46(10), 4355–4364 (1992)Google Scholar
  19. 19.
    Gramain, A.: Le type d’homotopie du groupe des difféomorphismes d’une surface compacte. Ann. Sci. École Norm. Sup. (4) 6, 53–66 (1973)Google Scholar
  20. 20.
    Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. (N.S.) 7(1), 65–222 (1982)Google Scholar
  21. 21.
    Hantsche, W., Wendt, W.: Drei dimensionali Euklidische Raumformen. Math. Ann. 110, 593–611 (1934)Google Scholar
  22. 22.
    Hatcher, A.E.: Homeomorphisms of sufficiently large P 2-irreducible 3-manifolds. Topology 15(4), 343–347 (1976)Google Scholar
  23. 23.
    Hatcher, A.E.: On the diffeomorphism group of \({S}^{1} \times {S}^{2}\). Proc. Am. Math. Soc. 83(2), 427–430 (1981)Google Scholar
  24. 24.
    Hatcher, A.E.: A proof of the Smale conjecture, \(\mathrm{Diff}({S}^{3}) \simeq \mathrm{ O}(4)\). Ann. Math. (2) 117(3), 553–607 (1983)Google Scholar
  25. 25.
    Hatcher, A.: On the diffeomorphism group of \({S}^{1} \times {S}^{2}\). Revised version posted at (2003)
  26. 26.
    Hempel, J.: 3-Manifolds. In: Annals of Mathematics Studies, vol. 86. Princeton University Press, Princeton (1976)Google Scholar
  27. 27.
    Henderson, D.W.: Corrections and extensions of two papers about infinite-dimensional manifolds. Gen. Topology Appl. 1, 321–327 (1971)Google Scholar
  28. 28.
    Henderson, D.W., Schori, R.: Topological classification of infinite dimensional manifolds by homotopy type. Bull. Am. Math. Soc. 76, 121–124 (1970)Google Scholar
  29. 29.
    Hendriks, H.: La stratification naturelle de l’espace des fonctions différentiables reelles n’est pas la bonne. C. R. Acad. Sci. Paris Ser. A-B 274, A618–A620 (1972)Google Scholar
  30. 30.
    Isham, C.J.: Topological θ-sectors in canonically quantized gravity. Phys. Lett. B 106(3), 188–192 (1981)Google Scholar
  31. 31.
    Ivanov, N.V.: Groups of diffeomorphisms of Waldhausen manifolds, Studies in topology, II. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 66, 172–176, 209 (1976)Google Scholar
  32. 32.
    Ivanov, N.V.: Diffeomorphism groups of Waldhausen manifolds. J. Sov. Math. 12, 115–118 (1979)Google Scholar
  33. 33.
    Ivanov, N.V.: Homotopies of automorphism spaces of some three-dimensional manifolds. Dokl. Akad. Nauk SSSR 244(2), 274–277 (1979)Google Scholar
  34. 34.
    Ivanov, N.V.: Corrections: Homotopies of automorphism spaces of some three-dimensional manifolds. Dokl. Akad. Nauk SSSR 249(6), 1288 (1979)Google Scholar
  35. 35.
    Ivanov, N.V.: Homotopy of spaces of diffeomorphisms of some three-dimensional manifolds. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 122, 72–103, 164–165 (1982)Google Scholar
  36. 36.
    Ivanov, N.V.: Homotopy of spaces of diffeomorphisms of some three-dimensional manifolds. J. Soviet Math. 26, 1646–1664 (1984)Google Scholar
  37. 37.
    Jaco, W.: Lectures on three-manifold topology. In: CBMS Regional Conference Series in Mathematics, vol. 43. American Mathematical Society, Providence (1980)Google Scholar
  38. 38.
    Jaco, W., Shalen, P.B.: Seifert fibered spaces in 3-manifolds. Memoir. Am. Math. Soc. 21(220), viii+192 (1979)Google Scholar
  39. 39.
    Kalliongis, J., McCullough, D.: Isotopies of 3-manifolds. Topology Appl. 71(3), 227–263 (1996)Google Scholar
  40. 40.
    Karcher, H.: Riemannian center of mass and mollifier smoothing. Comm. Pure Appl. Math. 30(5), 509–541 (1977)Google Scholar
  41. 41.
    Kobayashi, T., Saeki, O.: The Rubinstein-Scharlemann graphic of a 3-manifold as the discriminant set of a stable map. Pac. J. Math. 195(1), 101–156 (2000)Google Scholar
  42. 42.
    Kriegl, A., Michor, P.W.: The convenient setting of global analysis. In: Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence (1997)Google Scholar
  43. 43.
    Friedman, J.L., Witt, D.M.: Homotopy is not isotopy for homeomorphisms of 3-manifolds. Topology 25(1), 35–44 (1986)Google Scholar
  44. 44.
    Lundell, A., Weingram, S.: The Topology of CW Complexes. Van Nostrand Reinhold, Princeton (1969)Google Scholar
  45. 45.
    Mather, J.N.: Stability of \(\mathrm{{C}}^{\infty }\) mappings. III. Finitely determined mapgerms. Inst. Hautes Etudes Sci. Publ. Math. 35, 279–308 (1968)Google Scholar
  46. 46.
    McCullough, D.: Isometries of elliptic 3-manifolds. J. Lond. Math. Soc. (2) 65(1), 167–182 (2002)Google Scholar
  47. 47.
    McCullough, D., Soma, T.: The Smale conjecture for Seifert fibered spaces with hyperbolic base orbifold (2010) [ArXiv:1005.5061]Google Scholar
  48. 48.
    Neumann, W., Raymond, F.: Automorphisms of Seifert manifolds (1979). PreprintGoogle Scholar
  49. 49.
    Orlik, P.: Seifert manifolds. In: Lecture Notes in Mathematics, vol. 291. Springer, Berlin (1972)Google Scholar
  50. 50.
    Orlik, P., Vogt, E., Zieschang, H.: Zur Topologie gefaserter dreidimensionaler Mannigfaltigkeiten. Topology 6, 49–64 (1967)Google Scholar
  51. 51.
    Palais, R.S.: Local triviality of the restriction map for embeddings. Comment. Math. Helv. 34, 305–312 (1960)Google Scholar
  52. 52.
    Palais, R.S.: Homotopy theory of infinite dimensional manifolds. Topology 5, 1–16 (1966)Google Scholar
  53. 53.
    Park, C.Y.: Homotopy groups of automorphism groups of some Seifert fiber spaces. Dissertation at the University of Michigan (1989)Google Scholar
  54. 54.
    Park, C.Y.: On the weak automorphism group of a principal bundle, product case. Kyungpook Math. J. 31(1), 25–34 (1991)Google Scholar
  55. 55.
    Pitts, J.T., Rubinstein, J.H.: Applications of minimax to minimal surfaces and the topology of 3-manifolds. Miniconference on geometry and partial differential equations, 2 (Canberra, 1986), pp. 137–170. In: Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 12. Austral. Nat. Univ., Canberra (1987)Google Scholar
  56. 56.
    Rubinstein, J.H.: On 3-manifolds that have finite fundamental group and contain Klein bottles. Trans. Am. Math. Soc. 251, 129–137 (1979)Google Scholar
  57. 57.
    Rubinstein, J.H., Birman, J.S.: One-sided Heegaard splittings and homeotopy groups of some 3-manifolds. Proc. Lond. Math. Soc. (3) 49(3), 517–536 (1984)Google Scholar
  58. 58.
    Rubinstein, J.H., Scharlemann, M.: Comparing Heegaard splittings of non-Haken 3-manifolds. Topology 35(4), 1005–1026 (1996)Google Scholar
  59. 59.
    Sakuma, M.: The geometries of spherical Montesinos links. Kobe J. Math. 7(2), 167–190 (1990)Google Scholar
  60. 60.
    Scott, P.: The geometries of 3-manifolds. Bull. Lond. Math. Soc. 15(5), 401–487 (1983)Google Scholar
  61. 61.
    Seeley, R.T.: Extension of C functions defined in a half space. Proc. Am. Math. Soc. 15, 625–626 (1964)Google Scholar
  62. 62.
    Seifert, H.: Topologie dreidimensionaler gefaserter raume. Acta Math. 60(1), 147–238 (1933)Google Scholar
  63. 63.
    Sergeraert, F.: Un théoréme de fonctions implicites sur certains espaces de Fréchet et quelques applications. Ann. Sci. École Norm. Sup. (4) 5, 599–660 (1972)Google Scholar
  64. 64.
    Smale, S.: Diffeomorphisms of the 2-sphere. Proc. Am. Math. Soc. 10, 621–626 (1959)Google Scholar
  65. 65.
    Sorkin, R.D.: Classical topology and quantum phases: Quantum geons. In: Geometrical and Algebraic Aspects of Nonlinear Field Theory. North-Holland Delta Series, pp. 201–218. North-Holland, Amsterdam (1989)Google Scholar
  66. 66.
    Takens, F.: Characterization of a differentiable structure by its group of diffeomorphisms. Bol. Soc. Brasil. Mat. 10(1), 17–25 (1979)Google Scholar
  67. 67.
    Tougeron, J.C.: Une généralisation du théoréme des fonctions implicites. C. R. Acad. Sci. Paris Ser. A-B 262, A487–A489 (1966)Google Scholar
  68. 68.
    Tougeron, J.C.: Idéaux de fonctions différentiables. I. Ann. Inst. Fourier (Grenoble) 18(fasc. 1), 177–240 (1968)Google Scholar
  69. 69.
    Waldhausen, F.: Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, II. (German). Invent. Math. 3, 308–333 (1967). Ibid: 4, 87–117 (1967)Google Scholar
  70. 70.
    Waldhausen, F.: Gruppen mit Zentrum und 3-dimensionale Mannigfaltigkeiten. Topology 6, 505–517 (1967)Google Scholar
  71. 71.
    Waldhausen, F.: On irreducible 3-manifolds which are sufficiently large. Ann. Math. (2) 87, 56–88 (1968)Google Scholar
  72. 72.
    Wall, C.T.C.: Finite determinacy of smooth map-germs. Bull. Lond. Math. Soc. 13(6), 481–539 (1981)Google Scholar
  73. 73.
    Witt, D.M.: Symmetry groups of state vectors in canonical quantum gravity. J. Math. Phys. 27(2), 573–592 (1986)Google Scholar
  74. 74.
    Wolf, J.A.: Spaces of Constant Curvature, 3rd edn. Publish or Perish Inc., Boston (1974)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sungbok Hong
    • John Kalliongis
      • Darryl McCullough
        • J. Hyam Rubinstein

          There are no affiliations available

          Personalised recommendations