Skip to main content

A Lateral Inhibitory Spiking Neural Network for Sparse Representation in Visual Cortex

  • Conference paper
Advances in Brain Inspired Cognitive Systems (BICS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7366))

Included in the following conference series:

Abstract

Sparse representation has been validated to be a common phenomenon in many sensory neural systems, but its underlying neural mechanism still remains unclear. This paper proposes a neurally plausible model towards solving this problem. We find that lateral inhibition is the fundamental neural mechanism for sparse representation in the visual cortex, by which cortical neurons not only compete with each other so that the input signal can be represented sparsely but also cooperate with each other to make the representation more accurate. We integrate this result into the matching pursuit framework, a quite suitable solution for neural implementation, to illustrate how an input signal is sparsely represented in V1. Our simulation results show that lateral inhibition can evidently decrease the average squared error in the representation and then the input signal can be sparsely represented very well by the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shannon, C.E., Weaver, W.: The mathematical theory of communication. University of Illinois Press, Urbana (1949)

    MATH  Google Scholar 

  2. Shannon, C.E.: Prediction and Entropy of Printed English. Bell Systems Technical Journal 30, 50–64 (1951)

    MATH  Google Scholar 

  3. Barlow, H.: Possible principles underlying the transformation of sensory messages. Sensory Communication, 217–234 (1961)

    Google Scholar 

  4. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  5. Olshausen, B.A.: Principles of Image Representation in Visual Cortex. In: Chalupa, L.M., Werner, J.S. (eds.) The Visual Neurosciences, pp. 1603–1615. MIT Press (2003)

    Google Scholar 

  6. Ringach, D.L.: Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. J. Neurophysiol. 88, 455–463 (2002)

    Google Scholar 

  7. Rehn, M., Sommer, F.T.: A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields. Journal of Computational Neuroscience 22, 135–146 (2007)

    Article  MathSciNet  Google Scholar 

  8. Vinje, W.E., Gallant, J.L.: Sparse Coding and Decorrelation in Primary Visual Cortex During Natural Vision. Science 287, 1273–1276 (2000)

    Article  Google Scholar 

  9. Perez-Orive, J., Mazor, O., Turner, G.C., Cassenaer, S., Wilson, R.I., Laurent, G.: Oscillations and Sparsening of Odor Representations in the Mushroom Body. Science 297, 359–365 (2002)

    Article  Google Scholar 

  10. Laurent, G.: Olfactory network dynamics and the coding of multidimensional signals. Nature Reviews Neuroscience 3, 884–895 (2002)

    Article  Google Scholar 

  11. Lewicki, M.S.: Efficient coding of natural sounds. Nature Neuroscience 5, 356–363 (2002)

    Article  Google Scholar 

  12. Smith, E.C., Lewicki, M.S.: Efficient auditory coding. Nature 439, 978–982 (2006)

    Article  Google Scholar 

  13. Perrinet, L.: Feature detection using spikes: the greedy approach. Journal of Physiology-Paris 98, 530–539 (2004)

    Article  Google Scholar 

  14. Perrinet, L.: Efficient Source Detection Using Integrate-and-Fire Neurons. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005, Part I. LNCS, vol. 3696, pp. 167–172. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Perrinet, L.U.: Role of homeostasis in learning sparse representations. Neural Computation 22, 1812–1836 (2010)

    Article  MATH  Google Scholar 

  16. Mattlat, S.G., Zhang, Z.: Matching Pursuits with Time-Frequency Dictionaries. IEEE Transactions on Signal Processing 41, 3397–3415 (1993)

    Article  Google Scholar 

  17. Rozell, C.J., Johnson, D.H., Baraniuk, R.G., Olshausen, B.A.: Sparse Coding via Thresholding and Local Competition in Neural Circuits. Neural Computation 20, 2526–2563 (2008)

    Article  MathSciNet  Google Scholar 

  18. Spratling, M.W.: Predictive Coding as a Model of Response Properties in Cortical Area V1. The Journal of Neuroscience 30, 3531–3543 (2010)

    Article  Google Scholar 

  19. Spratling, M.W.: A single functional model accounts for the distinct properties of suppression in cortical area V1. Vision Research 51, 563–576 (2011)

    Article  Google Scholar 

  20. Hartline, H.K., Ratliff, F.: Inhibitory interaction of receptor units in the eye of Limulus. Journal of General Physiology 40, 357–376 (1957)

    Article  Google Scholar 

  21. Hartline, H.K., Ratliff, F.: Spatial summation of inhibitory influences in the eye of Limulus, and the mutual interaction of receptor units. Journal of General Physiology 41, 1049–1066 (1958)

    Article  Google Scholar 

  22. Anderson, J.S., Carandini, M., Ferster, D.: Orientation Tuning of Input Conductance, Excitation, and Inhibition in Cat Primary Visual Cortex. J. Neurophysiol. 84, 909–926 (2000)

    Google Scholar 

  23. Priebe, N.J., Ferster, D.: Mechanisms underlying cross-orientation suppression in cat visual cortex. Nat. Neurosci. 9, 552–561 (2006)

    Article  Google Scholar 

  24. Ozeki, H., Finn, I.M., Schaffer, E.S., Miller, K.D., Ferster, D.: Inhibitory Stabilization of the Cortical Network Underlies Visual Surround Suppression. Neuron 62, 578–592 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, J., Jia, Y. (2012). A Lateral Inhibitory Spiking Neural Network for Sparse Representation in Visual Cortex. In: Zhang, H., Hussain, A., Liu, D., Wang, Z. (eds) Advances in Brain Inspired Cognitive Systems. BICS 2012. Lecture Notes in Computer Science(), vol 7366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31561-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31561-9_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31560-2

  • Online ISBN: 978-3-642-31561-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics