Skip to main content

Lambek Calculus and Linear Logic: Proof Nets as Parse Structures

  • Chapter
  • 1479 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6850))

Summary

This chapter, a large part of which is a translation of (Retoré, 1996), deals with the connection between Lambek categorial grammar and linear logic, the main objective being the presentation of proof nets which are excellent parse structures, because they identify linguistically equivalent analyses of a given sentence.

This graphical notation for proofs that are parse structures in categorial grammar is a not a mere variation for convenience. On a technical ground, it avoids the so-called spurious ambiguity problem of categorial grammars (the fact that we can find many different proofs/parse structures for what corresponds to a single analysis or lambda term). Conceptually, this proof syntax is a justification of the use of the expression parsing as deduction often associated with categorial grammar. Indeed proof nets only distinguish between proofs which correspond to different syntactic analyses.

We first give a rather complete presentation of the correspondence between the Lambek calculus and variants of multiplicative linear logic, since the Lambek calculus can be defined as non-commutative intuitionistic multiplicative linear logic without empty antecedents.

Next we define proof nets and establish their correspondence with the more traditional sequent calculus, present parsing as proof net construction and present some recent descriptions of non commutative proof nets.

As an evidence of their linguistic relevance, we explain how they provide a formal account of some performance questions, like the complexity of the processing of several intricate syntactic constructs, like center embedded relatives, garden path phenomena and preferred readings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrusci, V.M.: Phase semantics and sequent calculus for pure non-commutative classical linear logic. Journal of Symbolic Logic 56(4), 1403–1451 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Abrusci, V.M.: Non-commutative proof nets. In: Girard, et al., pp. 271–296 (1995)

    Google Scholar 

  • Asperti, A.: A linguistic approach to dead-lock. Tech. Rep. LIENS 91-15, Dép. Maths et Info, Ecole Normale Supérieure, Paris (1991)

    Google Scholar 

  • Asperti, A., Dore, G.: Yet Another Correctness Criterion for Multiplicative Linear Logic with Mix. In: Nerode, A., Matiyasevich, Y. (eds.) LFCS 1994. LNCS, vol. 813, pp. 34–46. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  • Bellin, G., Scott, P.J.: On the π-calculus and linear logic. Theoretical Computer Science 135, 11–65 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • van Benthem, J.: Language in Action: Categories, Lambdas and Dynamic Logic. Studies in logic and the foundation of mathematics, vol. 130. North-Holland, Amsterdam (1991)

    MATH  Google Scholar 

  • Bondy, J.A., Murty, U.S.R.: Graph Theory and Applications. Macmillan Press (1976)

    Google Scholar 

  • Dalrymple, M., Lamping, J., Pereira, F., Saraswat, V.: Linear logic for meaning assembly. In: Morrill, G., Oehrle, R. (eds.) Formal Grammar, pp. 75–93. FoLLI, Barcelona (1995)

    Google Scholar 

  • Danos, V.: La logique linéaire appliquée à l’étude de divers processus de normalisation et principalement du λ-calcul. Thèse de Doctorat, spécialité Mathématiques, Université Paris 7 (1990)

    Google Scholar 

  • Danos, V., Regnier, L.: The structure of multiplicatives. Archive for Mathematical Logic 28, 181–203 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Diestel, R.: Graph Theory, 4th edn. Springer (2010)

    Google Scholar 

  • Fleury, A.: La règle d’échange: logique linéaire multiplicative tréssée. Thèse de Doctorat, spécialité Mathématiques, Université Paris 7 (1996)

    Google Scholar 

  • Fleury, A., Retoré, C.: The mix rule. Mathematical Structures in Computer Science 4(2), 273–285 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Girard, J.Y.: Linear logic. Theoretical Computer Science 50(1), 1–102 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Girard, J.Y.: Linear logic: its syntax and semantics. In: Girard, et al., pp. 1–42 (1995)

    Google Scholar 

  • Girard, J.Y., Lafont, Y., Regnier, L. (eds.): Advances in Linear Logic. London Mathematical Society Lecture Notes, vol. 222. Cambridge University Press (1995)

    Google Scholar 

  • de Groote, P.: Linear Logic with Isabelle: Pruning the Proof Search Tree. In: Baumgartner, P., Posegga, J., Hähnle, R. (eds.) TABLEAUX 1995. LNCS (LNAI), vol. 918, pp. 263–277. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  • de Groote, P.: A Dynamic Programming Approach to Categorial Deduction. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 1–15. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  • de Groote, P., Lamarche, F.: Classical non-associative Lambek calculus. Studia Logica 71(3), 355–388 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • de Groote, P., Retoré, C.: Semantic readings of proof nets. In: Kruijff, G.J., Morrill, G., Oehrle, D. (eds.) Formal Grammar, pp. 57–70. FoLLI, Prague (1996)

    Google Scholar 

  • Guerrini, S.: Correctness of multiplicative proof nets is linear. In: 14th Symposium on Logic in Computer Science (LICS 1999), pp. 454–463. IEEE (1999)

    Google Scholar 

  • Guerrini, S.: A linear algorithm for MLL proof net correctness and sequentialization. Theoretical Computer Science 412(20), 1958–1978 (2011); Girard’s Festschrift

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson, M.E.: Proof nets and the complexity of processing center-embedded constructions. Journal of Logic Language and Information Special Issue on Recent Advances in Logical and Algebraic Approaches to Grammar 7(4), 433–447 (1998)

    MATH  Google Scholar 

  • Lamarche, F.: Proof nets for intuitionistic linear logic: Essential nets. 35 page technical report available by FTP from the Imperial College archives (1994)

    Google Scholar 

  • Lambek, J.: From categorial grammar to bilinear logic. In: Došen, K., Schröder-Heister, P. (eds.) Substructural Logics, pp. 207–237. Oxford University Press, Oxford (1993)

    Google Scholar 

  • Lincoln, P., Mitchell, J., Scedrov, A., Shankar, N.: Decision problems for propositional linear logic. Annals of Pure and Applied Logic 56(1-3), 239–311 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Melliès, P.A.: A topological correctness criterion for multiplicative non-commutative logic. In: Ehrhard, T., Girard, J.Y., Ruet, P., Scott, P. (eds.) Linear Logic in Computer Science. London Mathematical Society Lecture Note, vol. 316, ch. 8, pp. 283–321. Cambridge University Press (2004)

    Google Scholar 

  • Merenciano, J.M., Morrill, G.: Generation as Deduction on Labelled Proof Nets. In: Retoré, C. (ed.) LACL 1996. LNCS (LNAI), vol. 1328, pp. 310–328. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  • Métayer, F.: Homology of proof-nets. Prépublication 39, Equipe de Logique, Université Paris 7 (1993)

    Google Scholar 

  • Moot, R.: Filtering axiom links for proof nets. In: Kallmeyer, L., Monachesi, P., Penn, G., Satta, G. (eds.) Proceedings of the 12th Conference on Formal Grammar (FG 2007). CSLI Publications, Dublin (2007) (to appear) ISSN 1935-1569

    Google Scholar 

  • Morrill, G.: Memoisation of categorial proof nets: parallelism in categorial processing. In: Abrusci, V.M., Casadio, C. (eds.) Third Roma Workshop: Proofs and Linguistics Categories – Applications of Logic to the Analysis and Implementation of Natural Language. CLUEB, Bologna (1996)

    Google Scholar 

  • Morrill, G.: Incremental processing and acceptability. Computational Linguistics 26(3), 319–338 (2000); preliminary version: UPC Report de Recerca LSI-98-46-R (1998)

    Article  Google Scholar 

  • Morrill, G.: Categorial Grammar: Logical Syntax, Semantics, and Processing. Oxford University Press (2011)

    Google Scholar 

  • Morrill, G., Fadda, M.: Proof nets for basic discontinuous Lambek calculus. Journal of Logic and Computation 18(2), 239–256 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Murawski, A., Ong, C.H.: Dominator trees and fast verification of proof nets. In: 15th Symposium on Logic in Computer Science (LICS 2000), pp. 181–191. IEEE (2000)

    Google Scholar 

  • Pentus, M.: Lambek calculus is NP-complete. Theoretical Computer Science 357(1), 186–201 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Pogodalla, S.: Generation in the Lambek calculus framework: an approach with semantic proof nets. In: Proceedings of NAACL 2000 (2000a)

    Google Scholar 

  • Pogodalla, S.: Generation, Lambek calculus, montague’s semantics and semantic proof nets. In: Proceedings of Coling 2000 (2000b)

    Google Scholar 

  • Pogodalla, S.: Generation with semantic proof nets. Research Report 3878, INRIA (2000c), http://hal.inria.fr/docs/00/07/27/75/PDF/RR-3878.pdf

  • Pogodalla, S., Retoré, C.: Handsome non-commutative proof-nets: perfect matchings, series-parallel orders and hamiltonian circuits. Tech. Rep. RR-5409, INRIA, presented at Categorial Grammars (2004); to appear in the Journal of Applied Logic

    Google Scholar 

  • Regnier, L.: Lambda calcul et réseaux. Thèse de doctorat, spécialité mathématiques, Université Paris 7 (1992)

    Google Scholar 

  • Retoré, C.: Réseaux et séquents ordonnés. Thèse de Doctorat, spécialité Mathématiques, Université Paris 7 (1993)

    Google Scholar 

  • Retoré, C.: Calcul de Lambek et logique linéaire. Traitement Automatique des Langues 37(2), 39–70 (1996)

    Google Scholar 

  • Retoré, C.: Perfect matchings and series-parallel graphs: multiplicative proof nets as R&B-graphs. In: Girard, J.Y., Okada, M., Scedrov, A. (eds.) Linear 1996. Electronic Notes in Theoretical Science, vol. 3. Elsevier (1996)

    Google Scholar 

  • Retoré, C.: A semantic characterisation of the correctness of a proof net. Mathematical Structures in Computer Science 7(5), 445–452 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Retoré, C.: Handsome proof-nets: perfect matchings and cographs. Theoretical Computer Science 294(3), 473–488 (2003), complete version RR-3652, http://hal.inria.fr/docs/00/07/30/20/PDF/RR-3652.pdf

  • Savateev, Y.: Product-Free Lambek Calculus Is NP-Complete. In: Artemov, S., Nerode, A. (eds.) LFCS 2009. LNCS, vol. 5407, pp. 380–394. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  • Yetter, D.N.: Quantales and (non-commutative) linear logic. Journal of Symbolic Logic 55, 41–64 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moot, R., Retoré, C. (2012). Lambek Calculus and Linear Logic: Proof Nets as Parse Structures. In: The Logic of Categorial Grammars. Lecture Notes in Computer Science, vol 6850. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31555-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31555-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31554-1

  • Online ISBN: 978-3-642-31555-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics