Distributed Data Federation without Disclosure of User Existence

  • Takao Takenouchi
  • Takahiro Kawamura
  • Akihiko Ohsuga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7371)


Service providers collect user’s personal information relevant to their businesses. Personal information stored by different service providers is expected to be combined to make new services. However, specific user records risk being identified from the combined personal information, and the user’s sensitive information may be revealed. Also, personal information collected by a service provider must not be disclosed to other service providers because of security issues. Thus, several researchers have been investigating distributed anonymization protocols, which combine the personal information stored by the providers and sanitize it to ensure an anonymity policy with minimum disclosure. However, when providers have different sets of the users, there is a problem that the existence of users in either service provider may be revealed. This paper introduces a new notion, δ-max-site-presence, which indicates the probability of the existence of users being revealed in a distributed environment and a new distributed anonymization protocol for hiding the existence of users. Our evaluation results show that the proposed protocol can anonymize users in accordance with the policy of hiding their existence and user anonymity without too much information loss.


Distributed Anonymization Privacy Preserving Data Publishing k-anonymity 


  1. 1.
    Bayardo, R.J., Agrawal, R.: Data privacy through optimal k-anonymization. In: Proc. ICDE 2005, pp. 217–228. IEEE (2005)Google Scholar
  2. 2.
    Blake, C.L., Merz, C.J.: Uci repository of machine learning databases (1998),
  3. 3.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set Intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Fung, B., Wang, K., Fu, A., Yu, P.: Privacy-Preserving Data Publishing: Concepts and Techniques, ch. 11-12. CRC Press (2010)Google Scholar
  5. 5.
    Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge University Press (2004)Google Scholar
  6. 6.
    Jiang, W., Clifton, C.: Privacy-Preserving Distributed k-Anonymity. In: Jajodia, S., Wijesekera, D. (eds.) Data and Applications Security 2005. LNCS, vol. 3654, pp. 166–177. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Jurczyk, P., Xiong, L.: Distributed Anonymization: Achieving Privacy for Both Data Subjects and Data Providers. In: Gudes, E., Vaidya, J. (eds.) Data and Applications Security 2009. LNCS, vol. 5645, pp. 191–207. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-anonymity. In: Proc. ICDE 2006, p. 25. IEEE (2006)Google Scholar
  9. 9.
    Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data mining. Journal of Privacy and Confidentiality 1, 59–98 (2009)Google Scholar
  10. 10.
    Mohammed, N., Fung, B.C.M., Wang, K., Hung, P.C.K.: Privacy-preserving data mashup. In: Proc. EDBT 2009, pp. 228–239. ACM (2009)Google Scholar
  11. 11.
    Nergiz, M.E., Atzori, M., Clifton, C.: Hiding the presence of individuals from shared databases. In: Proc. SIGMOD 2007, pp. 665–676. ACM (2007)Google Scholar
  12. 12.
    Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Transactions on Knowledge and Data Engineering 13, 1010–1027 (2001)CrossRefGoogle Scholar
  13. 13.
    Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10, 557–570 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wang, K., Fung, B.C.M., Dong, G.: Integrating Private Databases for Data Analysis. In: Kantor, P., Muresan, G., Roberts, F., Zeng, D.D., Wang, F.-Y., Chen, H., Merkle, R.C. (eds.) ISI 2005. LNCS, vol. 3495, pp. 171–182. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Yao, A.C.: Protocols for secure computations. In: Proc. SFCS 1982, pp. 160–164. IEEE Computer Society (1982)Google Scholar
  16. 16.
    Zhan, J., Chang, L., Matwin, S.: Privacy preserving k-nearest neighbor classification. International Journal of Network Security (2005)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Takao Takenouchi
    • 1
    • 2
  • Takahiro Kawamura
    • 2
  • Akihiko Ohsuga
    • 2
  1. 1.Knowledge Discovery Research LaboratoriesNEC CorporationJapan
  2. 2.Graduate School of Information SystemsThe University of Electro-CommunicationsJapan

Personalised recommendations