Skip to main content

Mining Ranking Models from Dynamic Network Data

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7376))

Abstract

In recent years, improvement in ubiquitous technologies and sensor networks have motivated the application of data mining techniques to network organized data. Network data describe entities represented by nodes, which may be connected with (related to) each other by edges. Many network datasets are characterized by a form of autocorrelation where the value of a variable at a given node depends on the values of variables at the nodes it is connected with. This phenomenon is a direct violation of the assumption that data are independently and identically distributed (i.i.d.). At the same time, it offers the unique opportunity to improve the performance of predictive models on network data, as inferences about one entity can be used to improve inferences about related entities. In this work, we propose a method for learning to rank from network data when data distribution may change over time. The learned models can be used to predict the ranking of nodes in the network for new time periods. The proposed method modifies the SVMRank algorithm in order to emphasize the importance of models learned in time periods during which data follow a data distribution that is similar to that observed in the new time period. We evaluate our approach on several real world problems of learning to rank from network data, coming from the area of sensor networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiolli, F.: A preference model for structured supervised learning tasks. In: ICDM, pp. 557–560. IEEE Computer Society (2005)

    Google Scholar 

  2. Ceci, M., Appice, A., Loglisci, C., Malerba, D.: Complex objects ranking: a relational data mining approach. In: Shin, S.Y., Ossowski, S., Schumacher, M., Palakal, M.J., Hung, C.C. (eds.) SAC, pp.1071–1077. ACM (2010)

    Google Scholar 

  3. Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. J. Artif. Int. Res. 10, 243–270 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Crammer, K., Singer, Y.: Pranking with ranking. In: NIPS, pp. 641–647. MIT Press (2001)

    Google Scholar 

  5. Dembczyski, K., Kotlowski, W., Slowiski, R., Szelag, M.: Learning of rule ensembles for multiple attribute ranking problems. In: Fürnkranz, J., Hüllermeier, E. (eds.) Preference Learning, pp. 217–247. Springer (2010)

    Google Scholar 

  6. Doyle, J.: Prospects for preferences. Computational Intelligence 20(2), 111–136 (2004)

    Article  MathSciNet  Google Scholar 

  7. Draper, N., Smith, H.: Applied Regression Analysis, 2nd edn. Wiley, New York (1981)

    MATH  Google Scholar 

  8. Fürnkranz, J., Hüllermeier, E.: Pairwise Preference Learning and Ranking. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 145–156. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Har-Peled, S., Roth, D., Zimak, D.: Constraint Classification: A New Approach to Multiclass Classification. In: Cesa-Bianchi, N., Numao, M., Reischuk, R. (eds.) ALT 2002. LNCS (LNAI), vol. 2533, pp. 365–379. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Har-Peled, S., Roth, D., Zimak, D.: Constraint classification for multiclass classification and ranking. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems 15 (NIPS 2002), pp. 785–792 (2003)

    Google Scholar 

  11. Herbrich, R., Graepel, T., Bollmann-sdorra, P., Obermayer, K.: Learning preference relations for information retrieval (1998)

    Google Scholar 

  12. Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries for ordinal regression. MIT Press (2000)

    Google Scholar 

  13. Hüllermeier, E., Fürnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning pairwise preferences. Artif. Intell. 172(16-17), 1897–1916 (2008)

    Article  MATH  Google Scholar 

  14. Jensen, D., Neville, J.: Linkage and autocorrelation cause feature selection bias in relational learning. In: Proc. 9th Intl. Conf. on Machine Learning, pp. 259–266. Morgan Kaufmann (2002)

    Google Scholar 

  15. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2002, pp. 133–142. ACM, New York (2002)

    Chapter  Google Scholar 

  16. Malerba, D., Ceci, M.: Learning to Order: A Relational Approach. In: Raś, Z.W., Tsumoto, S., Zighed, D.A. (eds.) MCD 2007. LNCS (LNAI), vol. 4944, pp. 209–223. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Neville, J., Simsek, O., Jensen, D.: Autocorrelation and relational learning: Challenges and opportunities. In: Wshp. Statistical Relational Learning (2004)

    Google Scholar 

  18. Newman, M.E.J., Watts, D.J.: The structure and dynamics of networks. Princeton University Press (2006)

    Google Scholar 

  19. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab (November 1999), http://ilpubs.stanford.edu:8090/422/ , previous number = SIDL-WP-1999-0120

  20. Stojanova, D., Ceci, M., Appice, A., Džeroski, S.: Network Regression with Predictive Clustering Trees. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS, vol. 6913, pp. 333–348. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Swanson, B.J.: Autocorrelated rates of change in animal populations and their relationship to precipitation. Conservation Biology 12(4), 801–808 (1998)

    Article  MathSciNet  Google Scholar 

  22. Tesauro, G.: Connectionist learning of expert preferences by comparison training. In: Advances in Neural Information Processing Systems 1, pp. 99–106. Morgan Kaufmann Publishers Inc., San Francisco (1989)

    Google Scholar 

  23. Vapnik, V., Golowich, S.E., Smola, A.: Support vector method for function approximation, regression estimation, and signal processing. In: Advances in Neural Information Processing Systems 9, pp. 281–287. MIT Press (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Macchia, L., Ceci, M., Malerba, D. (2012). Mining Ranking Models from Dynamic Network Data. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2012. Lecture Notes in Computer Science(), vol 7376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31537-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31537-4_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31536-7

  • Online ISBN: 978-3-642-31537-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics