Skip to main content

Finding Correlations between 3-D Surfaces: A Study in Asymmetric Incremental Sheet Forming

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7376))

Abstract

A mechanism for describing 3-D local geometries is presented which is suitable for input into a classifier generator. The objective is to predict the springback that will occur when Asymmetric Incremental Sheet Forming (AISF) is applied to sheet metal to produce a desired shape so that corrective measures can be applied. The springback is localised hence the desired before shape and the actual after shape are expressed using the concept of a Local Geometry Matrix (LGMs). The reported evaluation demonstrates that the LGM idea can be usefully employed to capture local geometries with respect to individual shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allwood, J.M., King, G.P.F., Duflou, J.: A structured search for applications of the incremental sheet-forming process by product segmentation. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 219(2), 239–244 (2005)

    Article  Google Scholar 

  2. Bambach, M., Taleb Araghi, B., Hirt, G.: Strategies to improve the geometric accuracy in asymmetric single point incremental forming. Production Engineering Research and Development 3(2), 145–156 (2009)

    Article  Google Scholar 

  3. Coenen, F., Leng, P.: Obtaining best parameter values for accurate classification. In: Proc. IEEE Int. Conf. on Data Mining (ICDM 2005), pp. 597–600 (2005)

    Google Scholar 

  4. Coenen, F., Leng, P., Zhang, L.: Threshold Tuning for Improved Classification Association Rule Mining. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 216–225. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Dearden, G., Edwardson, S.P., Abed, E., Bartkowiak, K., Watkins, K.G.: Correction of distortion and design shape in aluminium structures using laser forming. In: 25th International Congress on Applications of Lasers and Electro Optics(ICALEO 2006), pp. 813–817 (2006)

    Google Scholar 

  6. Diederich, J.: Rule extraction from support vector machines. Springer New York Inc. (2008)

    Google Scholar 

  7. Dunston, S., Ranjithan, S., Bernold, E.: Neural network model for the automated control of springback in rebars. IEEE Expert: Intelligent Systems and Their Applications, 45–49 (1996)

    Google Scholar 

  8. Edwardson, S.P., Watkins, K.G., Dearden, G., Magee, J.: Generation of 3D shapes using a laser forming technique. In: Proceedings of ICALEO 2001, pp. 2–5 (2001)

    Google Scholar 

  9. Egerton, P.A., Hall, W.W.: Computer graphics: Mathematical first steps. Simon and Schuster International (1998)

    Google Scholar 

  10. Elalfi, A.E., Haque, R., Elalami, M.E.: Extracting rules from trained neural network using GA for managing e-business. Applied Soft Computing 4(1), 65–77 (2004)

    Article  Google Scholar 

  11. Friedman, J.H.: Multivariate adaptive regression splines. The Annals of Statistics 19(1), 1–67 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, G., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Transactions on Image Processing 19(6), 1657–1663 (2010)

    Article  MathSciNet  Google Scholar 

  13. Hirt, G., Ames, J., Bambach, M., Kopp, R., Kopp, R.: Forming strategies and process modelling for cnc incremental sheet forming. CIRP Annals - Manufacturing Technology 53(1), 203–206 (2004)

    Article  Google Scholar 

  14. Inamdar, M., Date, P.P., Narasimhan, K., Maiti, S.K., Singh, U.P.: Development of an artificial neural network to predict springback in air vee bending. International Journal of Advanced Manufacturing Technology 16(5), 376–381 (2000)

    Article  Google Scholar 

  15. Kim, D.J., Kim, B.M.: Application of neural network and fem for metal forming processes. International Journal of Machine Tools and Manufacture 40(6), 911–925 (1999)

    Article  Google Scholar 

  16. Kinsey, B., Cao, J., Solla, S.: Consistent and minimal springback using a stepped binder force trajectory and neural network control. Journal of Engineering Materials and Technology 122(1113), 113–118 (2000)

    Google Scholar 

  17. Li, W., Han, J., Pei, J.: Cmar: Accurate and efficient classification based on multiple class-association rules. In: Proc. IEEE Int. Conf. on Data Mining (ICDM 2005), pp. 369–376 (2001)

    Google Scholar 

  18. Manabe, K., Yang, M., Yoshihara, S.: Artificial intelligence iidentification of process parameters and adaptive control system for deep drawing process. Journal of Materials Processing Technology 80-81, 421–426 (1998)

    Article  Google Scholar 

  19. Narasimhan, N., Lovell, M.: Predicting springback in sheet metal forming an explicit to implicit sequential solution procedure. Finite Elements in Analysis and Design 33(1), 29–42 (1999)

    Article  MATH  Google Scholar 

  20. Ojala, T., Inen, M.P., Maéenpaé, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

    Article  Google Scholar 

  21. Pathak, K.K., Panthi, S., Ramakrishnan, N.: Application of neural network in sheet metal bending process. Defence Science Journal 55(2), 125–131 (2005)

    Google Scholar 

  22. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc. (1993)

    Google Scholar 

  23. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)

    Google Scholar 

  24. Rufni, R., Cao, J.: Using neural network for springback minimization in a channel forming process. Journal of Materials and Manufacturing 107(5), 65–73 (1998)

    Google Scholar 

  25. Xu, J., Zhang, Z., Wu, Y.: Application of data mining method to improve the accuracy of springback prediction in sheet metal forming. Journal of Shanghai University (English Edition) 8(3), 348–353 (2004)

    Article  MathSciNet  Google Scholar 

  26. Yin, J.L., Li, D.Y.: Knowledge discovery from finite element simulation data. In: Proceedings of 2004 International Conference on Machine Learning and Cybernetics, pp. 1335–1340 (2004)

    Google Scholar 

  27. Yin, X., Han, J.: Cpar: Classification based on predictive association rules. In: Proc. SIAM Int. Conf. on Data Mining (SDM 2003), pp. 331–335 (2003)

    Google Scholar 

  28. Zhang, S., Luo, C., Peng, Y.H., Li, D.Y., Yang, H.B.: Study on factors affecting springback and application of data mining in springback analysis. Journal of Shanghai Jiaotong University E-8(2), 192–196 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khan, M.S., Coenen, F., Dixon, C., El-Salhi, S. (2012). Finding Correlations between 3-D Surfaces: A Study in Asymmetric Incremental Sheet Forming. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2012. Lecture Notes in Computer Science(), vol 7376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31537-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31537-4_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31536-7

  • Online ISBN: 978-3-642-31537-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics