Skip to main content

Bayesian Approach to the Concept Drift in the Pattern Recognition Problems

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7376))

Abstract

We can face with the pattern recognition problems where the influence of hidden context leads to more or less radical changes in the target concept. This paper proposes the mathematical and algorithmic framework for the concept drift in the pattern recognition problems. The probabilistic basis described in this paper is based on the Bayesian approach to the estimation of decision rule parameters. The pattern recognition procedure derived from this approach uses the general principle of the dynamic programming and has linear computational complexity in contrast to polynomial computational complexity in general kind of pattern recognition procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Elwell, R., Polikar, R.: Incremental Learning of Concept Drift in Nonstationary Environments. IEEE Transactions on Neural Networks (2011)

    Google Scholar 

  2. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Machine Learning 23, 69–101 (1996)

    Google Scholar 

  3. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: SIAM International Conference on Data Mining (2007)

    Google Scholar 

  4. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Getoor, L., Senator, T.E., Domingos, P., Faloutsos, C. (eds.) KDD, pp. 226–235. ACM Press (2003)

    Google Scholar 

  5. Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale classification. In: KDD, pp. 377–382. ACM Press (2001)

    Google Scholar 

  6. Bifet, A., Gama, J., Pechenizkiy, M., Zliobaite, I.: Handling Concept Drift: Importance, Challenges and Solutions. In: PAKDD-2011 Tutorial, Shenzhen, China, May 27 (2011)

    Google Scholar 

  7. Vapnik, V.: Statistical Learning Theory. John-Wiley & Sons, Inc. (1998)

    Google Scholar 

  8. Tatarchuk, A.I., Sulimova, V.V., Mottl, V.V., Windridge, D.: Method of relevant potential functions for selective combination of diverse information in the pattern recognition learning based on Bayesian approach. In: MMRO-14: Conf. Proc., Suzdal, pp. 188–191 (2009)

    Google Scholar 

  9. Wiener, N.: Extrapolation, Interpolation, and Smoothing of Stationary Random Time Series with Engineering Applications, 163p. Technology Press of MIT, John Wiley & Sons (1949)

    Google Scholar 

  10. Krasotkina, O.V., Mottl, V.V., Turkov, P.A.: Bayesian Approach to the Pattern Recognition Problem in Nonstationary Environment. In: Kuznetsov, S.O., Mandal, D.P., Kundu, M.K., Pal, S.K. (eds.) PReMI 2011. LNCS, vol. 6744, pp. 24–29. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. De Groot, M.: Optimal Statistical Decisions. McGraw-Hill Book Company (1970)

    Google Scholar 

  12. Kostin, A.A., Kopylov, A.V., Mottl, V.V., Muchnik, I.B.: Dynamic Programming Procedures in Nonstationary Signal Analysis. Pattern Recognition and Image Analysis 11(1), 205–208 (2001)

    Google Scholar 

  13. Spambase Data Set, http://www.ics.uci.edu/~mlearn/MLRepository.html

  14. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive Online Analysis. Journal of Machine Learning Research, JMLR (2010), http://sourceforge.net/projects/moa-datastream/

  15. Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavalda, R.: New ensemble methods for evolving data streams. In: 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2009)

    Google Scholar 

  16. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: SBIA Brazilian Symposium on Artificial Intelligence, pp. 286–295 (2004)

    Google Scholar 

  17. Bifet, A., Frank, E., Holmes, G., Pfahringer, B.: Accurate Ensembles for Data Streams: Combining Restricted Hoeffding Trees using Stacking. Journal of Machine Learning Research Proceedings Track 13, 225–240 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Turkov, P., Krasotkina, O., Mottl, V. (2012). Bayesian Approach to the Concept Drift in the Pattern Recognition Problems. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2012. Lecture Notes in Computer Science(), vol 7376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31537-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31537-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31536-7

  • Online ISBN: 978-3-642-31537-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics