Skip to main content

A Locomotion Strategy for an Octopus-Bioinspired Robot

  • Conference paper
Book cover Biomimetic and Biohybrid Systems (Living Machines 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7375))

Included in the following conference series:

Abstract

In this paper a locomotion strategy for a six-limb robot inspired by the octopus is shown. A tight relationship between the muscular system and the nervous systems exists in the octopus. At a high level of abstraction, the same relationship between the mechanical structure and the control of the robot is presented here. The control board sends up to six signals to the limbs, which mechanically perform a stereotypical rhythmical movement. The results show how by coordinating only two limbs an effective locomotion is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laschi, C., Mazzolai, B., Cianchetti, M., Margheri, L., Follador, M., Dario, P.: A Soft Robot Arm Inspired by the Octopus. Advanced Robotics 26 (2012)

    Google Scholar 

  2. Calisti, M., Giorelli, M., Levy, G., Mazzolai, B., Hochner, B., Laschi, C., Dario, P.: An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinsp. Biomim. 6, 036002 (2011)

    Google Scholar 

  3. Sumbre, G., Fiorito, G., Flash, T., Hochner, B.: Neurobiology Motor control of flexible octopus arms. Nature 433, 595–596 (2005)

    Article  Google Scholar 

  4. Calisti, M., Arienti, A., Renda, F., Levy, G., Hochner, B., Mazzolai, B., Dario, P., Laschi, C.: Design and development of a soft robot with crawling and grasping capabilities. In: IEEE International Conference on Robotics and Automation, St. Paul, Minnesota USA (to appear, 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Calisti, M., Giorelli, M., Laschi, C. (2012). A Locomotion Strategy for an Octopus-Bioinspired Robot. In: Prescott, T.J., Lepora, N.F., Mura, A., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2012. Lecture Notes in Computer Science(), vol 7375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31525-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31525-1_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31524-4

  • Online ISBN: 978-3-642-31525-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics