Skip to main content

CyberRat Probes: High-Resolution Biohybrid Devices for Probing the Brain

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7375))

Included in the following conference series:

Abstract

Neuronal probes can be defined as biohybrid entities where the probes and nerve cells establish a close physical interaction for communicating in one or both directions. During the last decade neuronal probe technology has seen an exploded development. This paper presents newly developed chip–based CyberRat probes for enhanced signal transmission from nerve cells to chip or from chip to nerve cells with an emphasis on invivo interfacing, either in terms of signal−to−noise ratio or of spatiotemporal resolution. The oxide−insulated chips featuring large−scale and high−resolution arrays of stimulation and recording elements are a promising technology for high spatiotemporal resolution biohybrid devices, as recently demonstrated by recordings obtained from hippocampal slices and brain cortex in implanted animals. Finally, we report on SigMate, an inhouse comprehensive automated tool for processing and analysis of acquired signals by such large scale biohybrid devices.

All authors contributed equally to the work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rutten, W.L.: Selective electrical interfaces with the nervous system. Annu. Rev. Biomed. Eng. 4, 407–452 (2002)

    Article  Google Scholar 

  2. Fromherz, P.: Neuroelectronic Interfacing: Semiconductor chips with Ion Channels, Nerve cells, and Brain. In: Waser, R. (ed.) Nanoelectronics and Information Technology, pp. 781–810. Wiley–VCH, Berlin (2003)

    Google Scholar 

  3. Wise, K.D., et al.: Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc. IEEE 92, 76–97 (2004)

    Article  Google Scholar 

  4. Lebedev, M.A., Nicolelis, M.A.: Brain-machine interfaces: past, present and future. Trends. Neurosci. 29(9), 537–546 (2006)

    Article  Google Scholar 

  5. Hochberg, L.R., et al.: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099), 164–171 (2006)

    Article  Google Scholar 

  6. Vassanelli, S., Fromherz, P.: Transistor probes local potassium conductances in the adhesion region of cultured rat hippocampal neurons. J. Neurosci. 19(16), 6767–6773 (1999)

    Google Scholar 

  7. Vassanelli, S., Fromherz, P.: Transistor records of excitable neurons from rat brain. Appl. Phys. A. 66, 459–463 (1998)

    Article  Google Scholar 

  8. Hai, A., Shappir, J., Spira, M.E.: Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes. J. Neurophysiol. 104, 559–568 (2010)

    Article  Google Scholar 

  9. Lambacher, A., et al.: Electrical imaging of neuronal activity by multi–transistor–array (MTA) recording at 7.8 μm resolution. Appl. Phys. A. 79(7), 1607–1611 (2004)

    Article  Google Scholar 

  10. Hutzler, M., et al.: High-resolution multitransistor array recording of electrical field potentials in cultured brain slices. J. Neurophysiol. 96, 1638–1645 (2006)

    Article  Google Scholar 

  11. Girardi, S., Maschietto, M., Zeitler, R., Mahmud, M., Vassanelli, S.: High resolution cortical imaging using electrolyte–(metal)–oxide–semiconductor field effect transistors. In: 5th Intl. IEEE -EMBS Conf. on Neural Eng., pp. 269–272. IEEE Press, New York (2011)

    Chapter  Google Scholar 

  12. Vassanelli, S., Mahmud, M., Girardi, S., Maschietto, M.: On the Way to Large–Scale and High–Resolution Brain–Chip Interfacing. Cogn. Comput. 4(1), 71–81 (2012)

    Article  Google Scholar 

  13. MEA Meeting 2010, http://www.nmi1.de/meameeting2010/index.php

  14. Berdondini, L., et al.: A microelectrode array (MEA) integrated with clustering structures for investigating in vitro neurodynamics in confined interconnected subpopulations of neurons. Sens. Actuat. B: Chem. 114, 530–541 (2006)

    Article  Google Scholar 

  15. Berdondini, L., et al.: Extracellular recordings from high density microelectrode arrays coupled to dissociated cortical neuronal cultures. J. Neurosci. Meth. 177, 386–396 (2009)

    Article  Google Scholar 

  16. Potter, S.M., Wagenaar, D.A., DeMarse, T.B.: Closing the loop: stimulation feedback systems for embodied MEA cultures. In: Taketani, M., Baudry, M. (eds.) Advances in Network Electrophysiology: Using Multi–Electrodes–Arrays, pp. 215–242. Springer, New York (2005)

    Google Scholar 

  17. Fromherz, P.: Joining ionics and electronics: semiconductor chips with ion channels, nerve cells, and brain tissue. In: 2005 IEEE International Solid–State Circuits Conference (Tech. Dig. ISSCC), pp. 76–77. IEEE Press, New York (2005)

    Chapter  Google Scholar 

  18. Stangl, C., Fromherz, P.: Neuronal field potential in acute hippocampus slice recorded with transistor and micropipette electrode. Eur. J. Neurosci. 27, 958–964 (2008)

    Article  Google Scholar 

  19. Imfeld, K., et al.: Large–scale, high–resolution data acquisition system for extracellular recording of electrophysiological activity. IEEE T. Bio.–Med. Eng. 55(8), 2064–2072 (2008)

    Article  Google Scholar 

  20. Frey, U., et al.: Switch–matrix–based high–density microelectrode array in CMOS technology. IEEE J. Solid–St. Circ. 45(2), 467–482 (2010)

    Article  MathSciNet  Google Scholar 

  21. Eversmann, B., et al.: A 128 × 128 CMOS biosensor array for extracellular recording of neural activity. IEEE J. Solid–St. Circ. 38(12), 2306–2317 (2003)

    Article  Google Scholar 

  22. Eversmann, B., Lambacher, A., Gerling, G., Kunze, A.: A neural tissue interfacing chip for in–vitro applications with 32 k recording / stimulation channels on an active area of 2.6 mm2. In: 37th Solid–State Circuits Conference (ESSCIRC), pp. 211–214. IEEE Press, New York (2011)

    Google Scholar 

  23. Jones, K.E., Campbell, P.K., Normann, R.A.: A glass/silicon composite intracortical electrode array. Ann. Biomed. Eng. 20, 423–437 (1992)

    Article  Google Scholar 

  24. Kipke, D.R., Vetter, R.J., Williams, J.C., Hetke, J.F.: Silicon–substrate intracortical microelectrode arrays for long–term recording of neuronal spike activity in cerebral cortex. IEEE T. Neur. Sys. Reh. 11(2), 151–155 (2003)

    Article  Google Scholar 

  25. Lee, J., Rhew, H.G., Kipke, D.R., Flynn, M.P.: A 64 Channel Programmable Closed–Loop Neurostimulator With 8 Channel Neural Amplifier and Logarithmic ADC. IEEE J. Solid–St. Circ. 45(9), 1935–1945 (2010)

    Article  Google Scholar 

  26. Azin, M., Guggenmos, D.J., Barbay, S., Nudo, R.J., Mohseni, P.: A BatteryPowered Activity–Dependent Intracortical Microstimulation IC for Brain–Machine–Brain Interface. IEEE J. Solid–St. Circ. 46(4), 731–745 (2011)

    Article  Google Scholar 

  27. Venkatraman, S., et al.: In Vitro and In Vivo Evaluation of PEDOT Microelectrodes for Neural Stimulation and Recording. IEEE T. Neur. Sys. Reh. 19(3), 307–316 (2011)

    Article  Google Scholar 

  28. Buzsaki, G.: Large–scale recording of neuronal ensembles. Nat. Neurosci. 7(5), 446–451 (2004)

    Article  Google Scholar 

  29. Prochazka, A., Mushahwar, V.K., McCreery, D.: Neuralprostheses. J. Physiol. 533(pt. 1), 99–109 (2001)

    Google Scholar 

  30. Quiroga, R.Q., Nadasdy, Z., Ben–Shaul, Y.: Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 16(8), 1661–1687 (2004)

    Article  MATH  Google Scholar 

  31. Kwon, K.Y., Eldawlatly, S., Oweiss, K.G.: NeuroQuest: A comprehensive analysis tool for extracellular neural ensemble recordings. J. Neurosci. Meth. 204(1), 189–201 (2012)

    Article  Google Scholar 

  32. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single–trial EEG dynamics including independent component analysis. J. Neurosci. Meth. 134(1), 9–21 (2004)

    Article  Google Scholar 

  33. Bokil, H.S., Andrews, P., Kulkarni, J.E., Mehta, S., Mitra, P.P.: Chronux: A platform for analyzing neural signals. J. Neurosci. Meth. 192, 146–151 (2010)

    Article  Google Scholar 

  34. Cui, J., Xu, L., Bressler, S.L., Ding, M., Liang, H.: BSMART: A Matlab/C toolbox for analysis of multichannel neural time series. Neural Net. 21(8), 1094–1104 (2008)

    Article  Google Scholar 

  35. Egert, U., et al.: MEA–Tools: an open source toolbox for the analysis of multi–electrode data with Matlab. J. Neurosci. Meth. 117(1), 33–42 (2002)

    Article  Google Scholar 

  36. Gunay, C., et al.: Database analysis of simulated and recorded electrophysiological datasets with PANDORAs toolbox. Neuroinformatics 7(2), 93–111 (2009)

    Article  Google Scholar 

  37. Huang, Y., et al.: An integrative analysis platform for multiple neural spike train data. J. Neurosci. Meth. 172(2), 303–311 (2008)

    Article  Google Scholar 

  38. Magri, C., Whittingstall, K., Singh, V., Logothetis, N., Panzeri, S.: A toolbox for the fast information analysis of multiple–site LFP, EEG and spike train recordings. BMC Neurosci. 10(1), 81 (2009)

    Article  Google Scholar 

  39. Vato, A., et al.: Spike manager: a new tool for spontaneous and evoked neuronal networks activity characterization. Neurocomputing 58-60, 1153–1161 (2004)

    Article  Google Scholar 

  40. Versace, M., Ames, H., Lveill, J., Fortenberry, B., Gorchetchnikov, A.: KInNeSS: a modular framework for computational neuroscience. Neuroinf. 6(4), 291–309 (2008)

    Article  Google Scholar 

  41. Lidierth, M.: sigTOOL:A Matlab-based environment for sharing laboratory developed software to analyze biological signals. J. Neurosci. Meth. 178, 188–196 (2009)

    Article  Google Scholar 

  42. Meier, R., Egert, U., Aertsen, A., Nawrot, M.P.: FIND–A unified framework for neural data analysis. Neural Networks 21(8), 1085–1093 (2008)

    Article  Google Scholar 

  43. Mahmud, M., Bertoldo, A., Girardi, S., Maschietto, M., Vassanelli, S.: SigMate: A MATLAB–based automated tool for extracellular neuronal signal processing and analysis. J. Nerusci. Meth. 207, 97–112 (2012)

    Article  Google Scholar 

  44. Mahmud, M., Bertoldo, A., Girardi, S., Maschietto, M., Vassanelli, S.: SigMate: a Matlab–based neuronal signal processing tool. In: 32nd Intl. Conf. of IEEE EMBS, pp. 1352–1355. IEEE Press, New York (2010)

    Google Scholar 

  45. Mahmud, M., et al.: SigMate: A Comprehensive Software Package for Extracellular Neuronal Signal Processing and Analysis. In: 5th Intl. Conf. on Neural Eng., pp. 88–91. IEEE Press, New York (2011)

    Chapter  Google Scholar 

  46. Weis, R., Muller, B., Fromherz, P.: Neuron adhesion on a silicon chip probed by an array of field–effect transistors. Phys. Rev. Lett. 76(2), 327–330 (1996)

    Article  Google Scholar 

  47. Schmidtner, M., Fromherz, P.: Functional Na+ channels in cell adhesion probed by transistor recording. Biophys. J. 90, 183–189 (2006)

    Article  Google Scholar 

  48. Lambacher, A., et al.: Identifying Firing Mammalian Neurons in Networks with High–Resolution Multi–Transistor Array (MTA). Appl. Phys. A. 102, 1–11 (2011)

    Article  Google Scholar 

  49. Felderer, F., Fromherz, P.: Transistor needle chip for recording in brain tissue. App. Phys. A. 104, 1–6 (2011)

    Article  Google Scholar 

  50. Swanson, L.W.: Brain Maps: Structure of the Rat Brain. Academic, London (2003)

    Google Scholar 

  51. Mahmud, M., Girardi, S., Maschietto, M., Pasqualotto, E., Vassanelli, S.: An automated method to determine angular preferentiality using LFPs recorded from rat barrel cortex by brain–chip interface under mechanical whisker stimulation. In: 33rd Intl. Conf. of IEEE EMBS, pp. 2307–2310. IEEE Press, New York (2011)

    Google Scholar 

  52. Maschietto, M., et al.: Local field potentials recording from the rat brain cortex with transistor needle chips (unpublished)

    Google Scholar 

  53. Hofstotter, C., et al.: The Cerebellum chip: an analog VLSI Implementation of a Cerebellar Model of Classical Conditioning. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, pp. 577–584. MIT Press, Cambridge (2005)

    Google Scholar 

  54. Hofstotter, C., Mintz, M., Verschure, P.F.M.J.: The cerebellum in action: a simulation and robotics study. Eur. J. Neurosci. 16, 1361–1376 (2002)

    Article  Google Scholar 

  55. Vershure, P.F.M.J., Mintz, M.: A real–time model of the cerebellar circuitry underlying classical conditioning: A combined simulation and robotics study. Neurocomputing 38-40, 1019–1024 (2001)

    Article  Google Scholar 

  56. Liu, S.C., Delbruck, T.: Neuromorphic sensory systems. Curr. Opin. Neurobiol. 20(2), 288–295 (2010)

    Article  Google Scholar 

  57. Wen, B., Boahen, K.: A silicon cochlea with active coupling. IEEE T. Biomed. Circ. S. 3(6), 444–455 (2009)

    Article  Google Scholar 

  58. Heming, E.A., Choo, R., Davies, J.N., Kiss, Z.H.T.: Designing a thalamic somatosensory neural prosthesis: Consistency and persistence of percepts evoked by electrical stimulation. IEEE T. Neur. Sys. Reh. 19(5), 477–482 (2011)

    Article  Google Scholar 

  59. Ahrens, K.F., Kleinfeld, D.: Current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat. J. Neurophysiol. 92, 1700–1707 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vassanelli, S., Felderer, F., Mahmud, M., Maschietto, M., Girardi, S. (2012). CyberRat Probes: High-Resolution Biohybrid Devices for Probing the Brain. In: Prescott, T.J., Lepora, N.F., Mura, A., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2012. Lecture Notes in Computer Science(), vol 7375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31525-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31525-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31524-4

  • Online ISBN: 978-3-642-31525-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics