Skip to main content

Internal Drive Regulation of Sensorimotor Reflexes in the Control of a Catering Assistant Autonomous Robot

  • Conference paper
  • 2802 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7375))

Abstract

We present an autonomous waiter robot control system based on the reactive layer of the Distributed Adaptive Control (DAC) architecture. The waiterbot has to explore the space where catering is set and invite the guests to serve themselves with chocolate or candies. The control model is taking advantage of DAC’s allostatic control system that allows the selection of actions through the modulation of drive states. In the robot´s control system two independent behavioral loops are implemented serving specific goals: a navigation system to explore the space and a gazing behavior that invites human users to serve themselves. By approaching and gazing at a potential consumer the robot performs its serving behavior. The system was tested in a simulated environment and during a public event where it successfully delivered its wares. From the observed interactions the effect of drive based self-regulated action in living machines is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asama, H., Fukuda, T., Arai, T.: Distributed Autonomous Robotic Systems. Springer (1994)

    Google Scholar 

  2. Bekey, G.A.: Autonomous Robots: From Biological Inspiration to Implementation and Control. MIT Press (2005)

    Google Scholar 

  3. Blazquez, P.M., Hirata, Y., Heiney, S.A., et al.: Cerebellar Signatures of Vestibulo-Ocular Reflex Motor Learning. J. Neurosci. 23, 9742–9751 (2003)

    Google Scholar 

  4. Braitenberg, V.: Vehicles: Experiments in synthetic psychology. MIT Press (1984)

    Google Scholar 

  5. Duff, A., Rennó-Costa, C., Marcos, E., et al.: From Motor Learning to Interaction Learning in Robots. From Motor Learning to Interaction Learning in Robots 264, 15–41 (2010)

    Article  Google Scholar 

  6. Duff, A., Sanchez Fibla, M., Verschure, P.F.M.J.: A biologically based model for the integration of sensory-motor contingencies in rules and plans: A prefrontal cortex based extension of the DAC architecture. Brain Research Bulletin 85, 289–304 (2011)

    Article  Google Scholar 

  7. Duff, A., Verschure, P.F.M.J.: Unifying perceptual and behavioral learning with a correlative subspace learning rule. Neurocomputing 73, 1818–1830 (2010)

    Article  Google Scholar 

  8. Eng, K., Babler, A., et al.: Ada - intelligent space: an artificial creature for the SwissExpo.02. In: IEEE International Conference on Robotics and Automation ICRA, pp. 4154–4159 (2003)

    Google Scholar 

  9. Hasslacher, B., Tilden, M.W.: Living machines. Robotics and Autonomous Systems 15, 143–169 (1995)

    Article  Google Scholar 

  10. Inderbitzin, M., Wierenga, S., et al.: Social cooperation and competition in the mixed reality space eXperience Induction Machine XIM. Virtual Reality 13, 153–158 (2009)

    Article  Google Scholar 

  11. Knapp, M.L., Hall, J.A.: Nonverbal Communication in Human Interaction. Cengage Learning (2009)

    Google Scholar 

  12. Lawson, B.: The Language of Space. Routledge Chapman & Hall (2001)

    Google Scholar 

  13. Lienhart, R., Kuranov, E., Pisarevsky, V.: Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection. In: DAGM 25th Pattern Recognition Symposium, pp. 297–304 (2003)

    Google Scholar 

  14. Lund, H., Gerstner, W., Germond, A., et al.: Something. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 745–750. Springer, Heidelberg (1997)

    Google Scholar 

  15. Luvizotto, A., Rennó-Costa, C., Pattacini, U., Verschure, P.F.M.J.: The Encoding of Complex Visual Stimuli by a Canonical Model of the Primary Visual Cortex: Temporal Population Code for Face Recognition on the iCub Robot. In: Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, pp. 313–318 (2010)

    Google Scholar 

  16. Manzolli, J., Verschure, P.F.M.J.: Roboser: A Real-World Composition System. Computer Music Journal 29, 55–74 (2005)

    Article  Google Scholar 

  17. Mathews, Z., Lechon, M., Calvo, J.M.B., et al.: Insect-Like mapless navigation based on head direction cells and contextual learning using chemo-visual sensors. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2243–2250. IEEE (2009)

    Google Scholar 

  18. Michaud, F., Brosseau, Y., Cote, C., et al.: Modularity and integration in the design of a socially interactive robot. In: IEEE International Workshop on Robot and Human Interactive Communication, pp. 172–177. IEEE (2005)

    Google Scholar 

  19. Rennó-Costa, C., Luvizotto, A.L., Marcos, E., et al.: Integrating Neuroscience-based Models Towards an Autonomous Biomimetic Synthetic Forager. In: Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, pp. 210–215 (2011)

    Google Scholar 

  20. Sanchez-Fibla, M., Bernardet, U., et al.: Allostatic Control for Robot Behavior Regulation: a Comparative Rodent-Robot Study. Advances in Complex Systems 13, 377 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schweighofer, N., Arbib, M.A., Dominey, P.F.: A model of the cerebellum in adaptive control of saccadic gain. Biological Cybernetics 75, 29–36 (1996)

    Article  MATH  Google Scholar 

  22. Simon, H.A.: The architecture of complexity. The Sciences of the Artificial, pp. 192–229. MIT Press, Cambridge (1969)

    Google Scholar 

  23. Simons, D.J., Levin, D.T.: Failure to detect changes to people during a real-world interaction. Psychonomic Bulletin & Review 5, 644–649 (1998)

    Article  Google Scholar 

  24. Verschure, P.F.M.J., Althaus, P.: A real-world rational agent: unifying old and new AI. Cognitive Science 27, 30 (2003)

    Article  Google Scholar 

  25. Verschure, P.F.M.J., Kröse, B., Pfeifer, R.: Distributed Adaptive Control: The self-organization of structured behavior. Robotics and Autonomous Systems 9, 181–196 (1992)

    Article  Google Scholar 

  26. Verschure, P.F.M.J., Voegtlin, T., Douglas, R.J.: Environmentally mediated synergy between perception and behaviour in mobile robots. Nature 425, 620–624 (2003)

    Article  Google Scholar 

  27. Verschure, P.F.M.J., Wyss, R., König, P.: A Model of the Ventral Visual System Based on Temporal Stability and Local Memory. PLOS Biology 4, 1–8 (2006)

    Article  Google Scholar 

  28. Gandhi, N.J., Katnani, H.A.: Motor functions of the superior colliculus. Annual Review of Neuroscience 34, 205–231 (2011)

    Article  Google Scholar 

  29. Hofstötter, C., Mintz, M., et al.: The cerebellum in action: a simulation and robotics study. European Journal of Neuroscience 16, 1361–1376 (2002)

    Article  Google Scholar 

  30. McHaffie, J.G., Stanford, T.R., et al.: Subcortical loops through the basal ganglia. Trends in Neurosciences 28(8), 401–407 (2005)

    Article  Google Scholar 

  31. Pfeifer, R., Bongard, J.C.: How the Body Shapes the Way We Think: A New View of Intelligence. MIT Press, Cambridge (2006)

    Google Scholar 

  32. Pfeifer, R., Verschure, P.F.M.J.: The challenge of autonomous agents: Pitfalls and how to avoid them. In: Steels, L., Brooks, R. (eds.) Autonomous Agents, pp. 237–263. Springer (1994)

    Google Scholar 

  33. Sanchez-Fibla, M., Bernardet, U., et al.: Allostatic control for robot behavior regulation: a comparative rodent-robot study. In: Advances In Complex Systems (2010)

    Google Scholar 

  34. Song, J.H., Rafal, R., et al.: Neural substrates of target selection for reaching movements in superior colliculus. Journal of Vision 10(7), 1082–1082 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rennó-Costa, C., Luvizotto, A., Betella, A., Sánchez-Fibla, M., Verschure, P.F.M.J. (2012). Internal Drive Regulation of Sensorimotor Reflexes in the Control of a Catering Assistant Autonomous Robot. In: Prescott, T.J., Lepora, N.F., Mura, A., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2012. Lecture Notes in Computer Science(), vol 7375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31525-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31525-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31524-4

  • Online ISBN: 978-3-642-31525-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics