Skip to main content

A Digital Neuromorphic Implementation of Cerebellar Associative Learning

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7375))

Abstract

The cerebellum is a neuronal structure comprising half the neurons of the central nervous system. It is essential in motor learning and classical conditioning. Here we present a digital electronic module, pluggable to an artificial autonomous system, designed following the neural structure of the cerebellum. It emulates the associative learning function as described in the context of classical conditioning. Building on our previous work we propose a neuromorphic implementation portable to a Field Programmable Gate Array (FPGA), capable of generating responses of variable amplitude. To validate our design we test it with the simulation of a robot performing a navigation task on a curvy track. Our digital cerebellum is able to make adaptively-timed rotations with variable amplitude suitable for the track. This suggests that the Purkinje cell dependent learning circuits of the cerebellum do not only time the triggering of actions but can also tune the specific response amplitude.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albus, J.S.: Theory of Cerebellar Function. Mathematical Biosciences 10(1/2), 25–61 (1971)

    Article  Google Scholar 

  2. Carrillo, R.R., Ros, E., Boucheny, C., Coenen, O.J.-M.D.: A real-time spiking cerebellum model for learning robot control. Bio Systems 94(1-2), 18–27 (2008)

    Article  Google Scholar 

  3. Eccles, J.C., Ito, M., Szentágothai, J.: The Cerebellum as a Neural Machine (1967)

    Google Scholar 

  4. Gerstner, W., Kistler, W.M.: Spiking Neuron Models. Cambridge University Press (2002)

    Google Scholar 

  5. Hesslow, G., Yeo, C.: The functional anatomy of skeletal conditioning. In: A Neuroscientist’s Guide to Classical Conditioning. Springer, New York (2002)

    Google Scholar 

  6. Hofstötter, C., Gil, M., Eng, K., Indiveri, G., Mintz, M., Kramer, J., Verschure, P.F.M.J.: The cerebellum chip: an analog VLSI implementation of a cerebellar model of classical conditioning. Advances 17 (2005)

    Google Scholar 

  7. Hofstotter, C., Mintz, M., Verschure, P.F.M.J.: The cerebellum in action: a simulation and robotics study. European Journal of Neuroscience 16(7), 1361–1376 (2002)

    Article  Google Scholar 

  8. Kreider, J.C., Mauk, M.D.: Eyelid conditioning to a target amplitude: adding how much to whether and when. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 30(42), 14145–14152 (2010)

    Article  Google Scholar 

  9. Marr, D.: A Theory of Cerebellar Cortex. J. Physiol. 202, 437–470 (1969)

    Google Scholar 

  10. McKinstry, J.L., Edelman, G.M., Krichmar, J.L.: A cerebellar model for predictive motor control tested in a brain-based device. Proceedings of the National Academy of Sciences of the United States of America 103(9), 3387–3392 (2006)

    Article  Google Scholar 

  11. Prueckl, R., Taub, A.H., Herreros, I., Hogri, R., Magal, A., Bamford, S.A., Giovannucci, A., Almog, R.O., Shacham-Diamand, Y., Verschure, P.F.M.J., Mintz, M., Scharinger, J., Silmon, A., Guger, C.: Behavioral rehabilitation of the eye closure reflex in senescent rats using a real-time biosignal acquisition system. In: 2011 Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, EMBC, August 30-September 3, pp. 4211–4214 (2011)

    Google Scholar 

  12. Wörgötter, F., Porr, B.: Temporal sequence learning, prediction and control - A review of different models and their relation to biological mechanisms. Neural Comp. 17, 245–319 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bobo, L., Herreros, I., Verschure, P.F.M.J. (2012). A Digital Neuromorphic Implementation of Cerebellar Associative Learning. In: Prescott, T.J., Lepora, N.F., Mura, A., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2012. Lecture Notes in Computer Science(), vol 7375. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31525-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31525-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31524-4

  • Online ISBN: 978-3-642-31525-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics