Skip to main content

Acoustical Properties of Cellular Materials

  • Chapter
  • First Online:
  • 1499 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 31))

Abstract

While the acoustical behaviour of standard homogeneous materials like sheet metal can be described by a few basic statements, cellular materials show a more complex behaviour. Depending on the structure of the cells (open cells or closed cells) different acoustical behaviour can be seen. Transmission, absorption and reflection appear and vary in quantity depending on the shape and geometrical dimensions of the cells. Of course, the basic material of a single cell as well as the type of interconnection between the cells also have a strong influence on the acoustical properties. Within this contribution the acoustical properties of cellular materials are investigated by simulation and experiments. Hollow sphere structures serve as examples and plastic foams serve as references. The absorption coefficients as well as the complex wave number and the characteristic impedance are presented. The theoretical description is based on the theory of sound in porous media.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Xie, Z., Teruyuki, I., Yoshiyuki, O., Hideo, Y.: Characteristics of sound absorption in lotus type porous magnesium. Jpn. J. Appl. Phys. 43, 7315–7324 (2004)

    Article  CAS  Google Scholar 

  2. Öchsner, A., Augustin, C.: Multifunctional Hollow Sphere Structures. Springer, Berlin (2009)

    Book  Google Scholar 

  3. Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., Wadley, H.N.G.: Metal Foams: A Design Guide. Butterworth-Heinemann, Oxford (2000)

    Google Scholar 

  4. Degischer, H.P., Krizst, B.: Handbook of Cellular Metals: Production, Processing, Applications. Wiley-VCH, Weinheim (2002)

    Google Scholar 

  5. Scheffler, M., Colombo, P.: Cellular Ceramics—Structure, Manufacturing, Properties and Applications. WILEY-VCH, Weinheim (2005)

    Book  Google Scholar 

  6. Andersen, O., Hungerbach, W., Stephani, G., Studnitz, T.: Inno.zellmet—a concerted approach towards the application of non-foam type cellular metals. Mat. Sci. Forum 539–543, 1892–1897 (2007)

    Article  Google Scholar 

  7. Göhler, H., Kümmel, K., Hübelt, J., Hungerbach, W.: Metallic hollow sphere structures—examples for future noise reduction applications. Proc. CELLMET 2008, 119–124 (2009)

    Google Scholar 

  8. Pannert, W., Winkler, R., Merkel, M.: On the acoustical properties of metallic hollow sphere structures (MHSS). Mater. Lett. 63, 1121–1124 (2009)

    Article  CAS  Google Scholar 

  9. Möser, M., Müller, H.A.: Technische Akustik, 3rd edn. Springer, Berlin (2004)

    Google Scholar 

  10. Ryu, Yunseon, Choi, Man-Rim: Transmission Loss Measurement of the Exhaust system using 4-Microphones with Impedance Tube, 18th International Congress on Acoustics, Kyoto (2004)

    Google Scholar 

  11. Biot, M.A.: The theory of propagation of elastic waves in a fluid-saturated porous solid. J. Acoust. Soc. Am. 28, 168–178 (1956)

    Article  Google Scholar 

  12. Allard, J.F.: Propagation of sound in porous media. Elsevier Applied Science, New York (1993)

    Book  Google Scholar 

  13. Johnson, D.L., Koplik, J., Dashen, R.J.: Theory of dynamic permeability and tortuosity in fluid saturated porous media. J. Fluid Mech. 176, 379–402 (1987)

    Article  CAS  Google Scholar 

  14. Vehyl, C., Winkler, R., Merkel, M., Öchsner, A.: Structural characterisation of diffusion-bonded hollow sphere structures. Defect Diffus. Forum 280, 105–113 (2008)

    Article  Google Scholar 

  15. Han, F., Seiffert, G., Zhao, Y., Gibbs, B.: Acoustic absorption behavior of an open-celled aluminium foam. J. Phys. D Appl. Phys. 36, 294–302 (2003)

    Article  CAS  Google Scholar 

  16. Xie, Z., Teruyuki, I., Yoshiyuki, O., Hideo, Y.: Sound Absorption characteristics of lotus-type porous copper fabricated by unidirectional solidification. Mat. Sci. Eng. A Struct. Mater. 386, 390–395 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Pannert .

Editor information

Editors and Affiliations

Appendix

Appendix

Simple Rayleigh theory:

$$ Z\left( \omega \right) = - j\rho_{0} c\frac{\sqrt \chi }{\sigma }\sqrt {1 - j\frac{{{{\Upxi}}\sigma }}{{\omega \varrho_{0} \chi }}} *{\text{ctg}}(k_{\text{a}} d) $$
(21)
$$ Z_{a} \left( \omega \right) = \rho_{0} c\sqrt \chi \sqrt {1 - j\frac{{{{\Upxi}}\sigma }}{{\omega \varrho_{0} \chi }}} $$
(22)
$$ k_{\text{a}} = k\sqrt \chi \sqrt {1 - j\frac{{{{\Upxi}}\sigma }}{{\omega \varrho_{0} \chi }}} $$
(23)

Definition of the parameters with units. For some parameters a typical range is added in round brackets:

d:

thickness of the absorber [m]

ka :

wave number in the absorber [1/m]

ρ 0 :

density of air [kg/m3]

c:

speed of sound in air [m/s]

σ:

porosity [%], (σ < 1)

χ :

structure form factor [.], (χ > 1)

ω:

frequency [Hz]

Ξ:

flow resistance [Ns/m4], (5,000 Ns/m4 < Ξ < 1,00,000 Ns/m4)

Za(ω):

characteristic Impedance [kg/m2/s]

According to Champoux and Allard [12], who introduced the concept of characteristic dimensions, it is possible to calculate the bulk modulus and the effective density for porous media. Additional parameters arise

The meaning of the additional symbols in the following formulas is

μ:

dynamic viscosity of air [Ns/m]

cv :

shape factor of the tubes; viscous effects [.]

ct :

shape factor of the tubes; thermal effects [.]

Pr:

Prandtl number [.]

γ:

adiabatic exponent for air [.]

Characteristic dimensions: Viscous effects:

$$ {{\Uplambda}}_{{{\upupsilon}}} = \frac{1}{{c_{\upsilon } }}\sqrt {\frac{8\chi \mu }{{\sigma {{\Upxi}}}}} $$
(24a)

thermal effects

$$ {{\Uplambda}}_{\text{t}} = \frac{1}{{c_{\text{t}} }}\sqrt {\frac{8\chi \mu }{{\sigma {{\Upxi}}}}} $$
(24b)
$$ G_{{{\upupsilon}}} \left( \omega \right) = \sqrt {1 + \frac{{j4\chi^{2} \mu \rho_{0} \omega }}{{\sigma^{2} {{\Uplambda}}_{{{\upupsilon}}}^{2} {{\Upxi}}^{2} }}} $$
(25a)
$$ G_{t} \left( \omega \right) = \sqrt {1 + \frac{{j4\chi^{2} \mu \rho_{0} \omega Pr}}{{c_{\text{t}}^{4} \sigma^{2} {{\Uplambda}}_{\text{t}}^{2} {{\Upxi}}^{2} }}} $$
(25b)
$$ {{\uplambda}}_{{{\upupsilon}}} = c_{{{\upupsilon}}} \sqrt {\frac{{8\chi \rho_{0} \omega }}{{\sigma {{\Upxi}}}}} $$
(26a)
$$ {{\uplambda}}_{\text{t}} = \frac{1}{{c_{\text{t}} }}\sqrt {\frac{{8\chi \rho_{0} \omega }}{{\sigma {{\Upxi}}}}} $$
(26b)

Bulk modulus:

$$ K\left( \omega \right) = \frac{{\gamma P_{0} }}{{\gamma - (\gamma - 1)\left[ {1 + \frac{{8G_{\text{t}} (\omega )}}{{jPr\lambda_{\text{t}}^{2} }}} \right]^{ - 1} }} $$
(27)

Effective density:

$$ \rho_{eff} \left( \omega \right) = \rho_{0} \chi \left[ {1 + \frac{{8c_{\upsilon }^{2} G_{{{\upupsilon}}} (\omega )}}{{j\lambda_{{{\upupsilon}}}^{2} }}} \right] $$
(28)

Impedance of the medium:

$$ Z_{c} = \sqrt {\rho_{eff} (\omega )K(\omega )} $$
(29)

Impedance of sample with thickness d:

$$ Z = \frac{{ - jZ_{a} { \cot }(k_{a} d)}}{\sigma } $$
(30)

Wave number in the porous medium:

$$ k_{a} = \omega \sqrt {\frac{{\rho_{eff} (\omega )}}{K(\omega )}} $$
(31)

Coefficient of absorption:

$$ \alpha = \frac{{4{\text{Re}}(\frac{Z}{\rho c})}}{{\begin{array}{*{20}c} {\left[ { {\text{Re}}\left( {\frac{Z}{\rho c}} \right) + 1} \right]^{2} + \left[ {{\text{Im}}\left( {\frac{Z}{\rho c}} \right)} \right]^{2} } \\ {} \\ \end{array} }} $$
(32)

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pannert, W., Merkel, M., Öchsner, A. (2012). Acoustical Properties of Cellular Materials. In: Öchsner, A., da Silva, L., Altenbach, H. (eds) Mechanics and Properties of Composed Materials and Structures. Advanced Structured Materials, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31497-1_5

Download citation

Publish with us

Policies and ethics