Skip to main content

Research Advances and Perspective of Multi-Articulated and Robotic Hands

  • Chapter
  • First Online:
Characterization and Development of Biosystems and Biomaterials

Abstract

The development of prostheses for upper limbs is extensive and complex. Actually, the results obtained by our group in the design on a multiarticulated hand prosthesis are encouraging. Its design has to satisfy essential functions for the development of various activities. Besides, such prosthesis has to be versatile and a high precision in the execution of movements has to be satisfied. On the other hand, amputation of one extremity at any level, definitely, affects the quality of life of an individual, inducing a high emotional impact. In this chapter, an overview of the development of hand prostheses is provided. Main aspects of the state of art are mentioned. In the second part, the technological developments involved in the implementation of a multiarticulated hand prosthesis and robotic fingers by our group are discussed. With this information, the future trends in the design of robotic hands and the application of evolutive algorithms in the design of hand prostheses are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amat, J.: Posibilidades y perspectivas de la robótica en la medicina. Medicina y Tecnologia 6, 59–62 (1996)

    Google Scholar 

  2. Sollerman, C., Ejeskar, A.: Sollerman hand function test. A standardized method and its use in tetraplegic patients. Scand J. Plast. 29, 167–176 (1995)

    Article  CAS  Google Scholar 

  3. Zecca, M. On the development of a cybernetic prosthetic hand. Ph.D. thesis Scuola Superiore Sant’Anna, Pisa (2003)

    Google Scholar 

  4. Romm, S.: Arms by design: from antiquity to the renaissance. Plast. Reconstr. Surg. 84, 158–163 (1989)

    Article  CAS  Google Scholar 

  5. Thurston, A.J.: Paré and prosthetics: the early history of artificial limbs. Anz. J. Surg. 77, 1114–1119 (2007)

    Article  Google Scholar 

  6. Roberts, S.M. An investigation into the control of an upper-limb myoelectric prosthesis. Ph.D. thesis University of Plymouth (2002)

    Google Scholar 

  7. Silver-Thorn MB Design of artificial limbs for lower extremity amputees. Marquette University 33.1-33.5

    Google Scholar 

  8. Kawasaki, H., Komatsu, T., Uchiyama, K.: Dexterous anthropomorphic robot hand with distributed tactile sensor: GIFU Hand II. IEEE/ASME Trans. Mechatron. 7, 296–303 (2002)

    Article  Google Scholar 

  9. Jacobson, S.C., Wood, J.E., Knutti, D.F., Biggers, K.B.: The Utah/MIT dexterous hand: work in progress. Int. J. Robot. Res. 3, 21–50 (1984)

    Article  Google Scholar 

  10. Butterfass, J., Hirzinger, G., Knoch, S., Liu, H.: DLR’s Multisensory articulated hand Part 1: Hard and software architecture. IEEE Proc. Int. Conf. Rob. Autom. 3, 2081–2086 (1998)

    Google Scholar 

  11. Caffaz, A., Cannata, G.: The design and development of the DIST-Hand dexterous gripper. IEEE Proc. Int. Congr. Robot. Autom. 3, 2075–2080 (1998)

    Google Scholar 

  12. Butterfass, J., Grebenstein, M., Liu, H., Hirzinger, G.: DLR-HAND II: Next generation of a dexterous robotic hand. Proc. 2001 ICRA IEEE Int. Conf. Rob. Autom. 1, 109–114 (2001)

    Google Scholar 

  13. Borst, C.H., Fisher, M., Hirzinger, G.: Calculating hand configuration for precision and pinch grasp. IEEE/RSJ Int. Conf. Intel. Robots Syst. 2, 1553–1559 (2002)

    Google Scholar 

  14. Yang, J., Peña-Pitarch, E., Abdel-Malek, K., Patrick, A., Lindkvist, L.: A multi-fingered hand prosthesis. Mech. Mach. Theory 39, 555–581 (2004)

    Article  Google Scholar 

  15. Doshi, R., Yeh, C., LeBlanc, M.: The design and development of a gloveless endoskeletal prosthetic hand. J. Rehabil. Res. Dev. 35, 388–395 (1998)

    CAS  Google Scholar 

  16. Moon, Y.-M.: Bio-mimetic design of finger mechanism with contact aided compliant mechanism. Mech. Mach. Theory 42, 600–611 (2007)

    Article  Google Scholar 

  17. Velázquez-Sánchez, A.T., Lugo-González, E.A., Torres-San Miguel, C.R., Merchán-Cruz, E.A.: Síntesis de un mecanismo sub-actuado a partir de la función descriptiva del dedo índice. Científica 13, 95–103 (2009)

    Google Scholar 

  18. Figliolini, G., Rea, P., Principe, M.: Mechatronic design of Ca.U.M.Ha. 12th RAAD Workshop on robotics in Alpe-Adria-Danube region. Cassino Paper: 026RAAD03 (2003)

    Google Scholar 

  19. Merchán-Cruz, E.A., Urriolagoitia-Calderón, G., Hernández-Gómez, L.H., Villa, Y., Rabasa, G., Flores-Herrera, L.A., Flores-Campos, J.A.: Soft computing techniques in the trajectory planning of multirobot manipulators systems (Part I). Científica 9, 197–208 (2005)

    Google Scholar 

  20. Velázquez-Sánchez, A.T., Merchán-Cruz, E.A., Hernández-Gómez, L.H., Urriolagoitia Calderón, G.: Rango de movilidad y función descriptiva del dedo índice. Científica 11, 177–188 (2007)

    Google Scholar 

  21. Doulgeri, Z., Karayiannidis, Y.: Force position control for a robot finger with a soft tip and kinematics uncertainties. Robot Auton. Syst. 55, 328–336 (2007)

    Article  Google Scholar 

  22. Hincapié-Isaza, R.A., Rios-Porras, C.A., Gallego, R.A.: Técnicas heurísticas aplicadas al problema del cartero viajante (TSP). Scientia et Technica 10, 1–6 (2004)

    Google Scholar 

  23. Alves da Silva, A.P., Falcao, D.M.: Fundamentals of genetic algorithms. In: Lee, K.Y., El-Sharkawi, M.A. (eds.) Modern Heuristic Optimization Techniques. Theory and Applications to Power Systems. Wiley, NY (2007)

    Google Scholar 

  24. Lugo-González, E., Merchán-Cruz, E.A., Hernández-Gómez, L.H.: Synthesis optimization of planar mechanisms. Appl. Mech. Mater. 15, 55–60 (2009)

    Article  Google Scholar 

  25. Montana, D.J., Davis, L.: Training feedforward networks using genetic algorithms. Proceedings of the International Joint Conference on Artificial Intelligence, Morgan Kauffman pp. 762–767 (1989)

    Google Scholar 

  26. Miller, G.F., Todd, P.M., Hedge, S.U.: Designing neural networks using genetic algorithms. In: Schaffer, J.D. (ed.) Proceedings of the Third International Conference on Genetic Algorithms, pp. 379–384 (1989)

    Google Scholar 

  27. Kitano, H.: Designing neural networks using genetic algorithms with graph generation system. Complex Syst. 4, 461–476 (1990)

    Google Scholar 

  28. Yao, X.A.: Review of evolutionary artificial neural networks. Int. J. Intell. Syst. 8, 539–567 (1993)

    Article  Google Scholar 

  29. Van Rooij, A.J.F., Johnson, R.P., Jain, L.C.: Neural network training using genetic algorithms. World Scientific Publishing Company, USA (1996)

    Google Scholar 

  30. Whitley, D., Starkweather, T., Bogart, C.: Genetic algorithms and neural networks: optimizing connections and connectivity. Parallel Comput. 14, 347–361 (1990)

    Article  Google Scholar 

  31. Palmes, P.P., Hayasaka, T., Usui, S.: Mutation-based genetic. IEEE T Neural Netw. 16, 587–600 (2005)

    Article  Google Scholar 

  32. Harth, Z., Sun, H., Schafer, M.: Comparison of trust-region-based and evolutionary methods for optimization of flow geometries. Eng. Optimiz. 39, 797–810 (2007)

    Article  Google Scholar 

  33. Pfaeffle, J., Blankenhorn, B., Stabile, K., Imbriglia, J., Goitz, R.: Development and validation of a computed tomography-based methodology to measure carpal kinematics. J. Biomech. Eng.-T ASME 127, 541–548 (2005)

    Article  Google Scholar 

  34. Andrew, J.G., Youm, Y.: A biomechanical investigation of wrist kinematics. J. Biomech. 12, 83–93 (1979)

    Article  Google Scholar 

  35. Ferris, B.D., Stanton, J., Zamora, J.: Kinematics of the wrist. Evidence for two types of movement. J. Bone Joint Surg. Br. 82B, 242–245 (2000)

    Article  Google Scholar 

  36. Kobayashi, M., Berger, R.A., Naqy, L., Linscheid, R.L., Uchiyama, S., Ritt, M., An, K.N.: Normal kinematics of carpal bones: a three dimensional analysis of carpal bone motion relative to the radius. J. Biomech. 30, 787–793 (1997)

    Article  CAS  Google Scholar 

  37. Linscheid, R.L.: Kinematic consideration of the wrist. Clin. Orthop. 202, 27–39 (1986)

    Google Scholar 

  38. Nakamura, K., Beppu, M., Patterson, R.M., Hanson, C.A., Hume, P.J., Viegas, S.F.: Motion analysis in two dimensions of radial-ulnar deviation of type I versus type II lunates. J. Hand Surg. Am. 25, 877–888 (2000)

    Article  CAS  Google Scholar 

  39. Sarrafian, S.K., Melamed, J.L., Goshgarian, G.M.: Study of wrist motion in flexion and extension. Clin. Orthop. 126, 153–159 (1977)

    Google Scholar 

  40. Youm, Y., Flatt, A.E.: Kinematics of the wrist. Clin. Orthop. 149, 21–32 (1980)

    Google Scholar 

  41. Youm, Y., McMurthy, R.Y., Flatt, A.E., Gillespie, T.E.: Kinematics of the wrist I An experimental study of radial-ulnar deviation and flexion-extension. J. Bone Joint Surg. Am. 60, 423–431 (1978)

    CAS  Google Scholar 

  42. García-Elias, M., Cooney, W.P., An, K.N., Linscheid, R.L., Chao, E.Y.S.: Wrist kinematics after limited intercarpal arthrodesis. J. Hand Surg. Am. 14, 791–799 (1989)

    Article  Google Scholar 

  43. Savelberg, H.H.C.M., Kooloos, J.G.M., DeLange, A., Huiskes, R., Kauer, J.M.G.: Human carpal ligament recruitment and three dimensional carpal motion. J. Orthop. Res. 9, 693–704 (1991)

    Article  CAS  Google Scholar 

  44. Patterson, R.M., Nicodemus, C.L., Viegas, S.F., Elder, K.W., Rosenblatt, J.: High-speed, three dimensional kinematics analysis of the normal wrist. J. Hand Surg. Am. 23, 446–453 (1998)

    Article  CAS  Google Scholar 

  45. Jackson, W.T., Hefzy, M.S., Guo, H.: Determination of wrist kinematics using a magnetic tracking device. Med. Eng. Phys. 16, 123–133 (1994)

    Article  CAS  Google Scholar 

  46. Short, W.H., Werner, F.W., Fortino, M.D., Ka, Mann: Analysis of the kinematics of the scaphoid and lunate in the intact wrist joint. Hand Clin. 13, 93–108 (1997)

    CAS  Google Scholar 

  47. Ruby, L.K., Cooney, W.P., An, K.N., Linscheid, R.L., Chao, E.Y.S.: Relative motion of selected carpal bones: a kinematic analysis of the normal wrist. J. Hand Surg. Am. 13, 1–10 (1988)

    Article  CAS  Google Scholar 

  48. Crisco, J.J., McGovern, R.D., Wolfe, S.W.: Noninvasive technique for measuring in vivo three-dimensional carpal bone kinematics. J. Orthop. Res. 17, 96–100 (1999)

    Article  CAS  Google Scholar 

  49. Crisco, J.J., Wolfe, S.W., Neu, C.P., Pike, S.: Advances in the in vivo measurement of normal and abnormal carpal kinematics. Orthop. Clin. N Am. 32, 219–231 (2001)

    Article  CAS  Google Scholar 

  50. Feipel, V., Rooze, M.: Three-dimensional motion patterns of the carpal bones: an in vivo study using three dimensional computed tomography and clinical applications. Surg. Radiol. Anat. 21, 125–131 (1999)

    Article  CAS  Google Scholar 

  51. Moojen, T.M., Snel, J.G., Ritt, M.J.P.F., Venema, H.W., den Heeten, G.J., Bos, K.E.: Pisiform kinematics in vivo. J. Hand Surg. Am. 26, 901–907 (2001)

    Article  CAS  Google Scholar 

  52. Neu, C.P., McGovern, R.D., Crisco, J.J.: Kinematic accuracy of three surface registration methods in a three-dimensional wrist bone study. J. Biomech. Eng. T ASME 122, 528–533 (2000)

    Article  CAS  Google Scholar 

  53. Neu, C.P., Crisco, J.J., Wolfe, S.W.: In vivo kinematic behavior of the ratio-capitate joint during wrist flexion-extension and radio-ulnar deviation. J. Biomech. 34, 1429–1438 (2001)

    Article  CAS  Google Scholar 

  54. Snel, J.G., Venema, H.W., Moojen, T.M., Ritt, M.J.P.F., Grimbergen, C.A., den Heeten, G.J.: Quantitative in vivo analysis of the kinematics of carpal bones from three-dimensional CT images using a deformable surface model and a three-dimensional matching technique. Med. Phys. 27, 2037–2047 (2000)

    Article  CAS  Google Scholar 

  55. Sun, J.S., Shih, T.T.F., Ko, C.M., Chang, C.H., Hang, Y.S., Hou, S.M.: In vivo kinematic study of normal wrist motion: an ultrafast computed tomographic study. Clin. Biomech. 15, 212–216 (2000)

    Article  CAS  Google Scholar 

  56. Viegas, S.F., Hillman, G.R., Elder, K., Stoner, D., Patterson, R.M.: Measurement of carpal bone geometry by computer analysis of three dimensional CT images. J. Hand Surg. Am. 18, 341–349 (1993)

    Article  CAS  Google Scholar 

  57. Wolfe, S.W., Crisco, J.J., Katz, L.D.: A non-invasive method for studying in vivo carpal kinematics. J. Hand Surg. Br. Eur. 22, 147–152 (1997)

    Article  CAS  Google Scholar 

  58. Wolfe, S.W., Neu, C., Crisco, J.J.: In vivo scaphoid, lunate and capitate kinematics in flexion and in extension. J. Hand Surg. Am. 25, 860–869 (2000)

    Article  CAS  Google Scholar 

  59. Feipel, V., Dourdoufis, M., Salvia, P., Rooze, M.: The use of medical imaging-based kinematic analysis in the evaluation of wrist function and outcome. Hand Clin. 19, 401–409 (2003)

    Article  Google Scholar 

  60. Moojen, T.M., Snel, J.G., Ritt, M.J.P.F., Kauer, J.M.G., Venema, H.M., Bos, K.E.: Three-dimensional carpal kinematics in vivo. Clin. Biomech. 17, 506–514 (2002)

    Article  CAS  Google Scholar 

  61. Sebastian, T.B., Tek, H., Crisco, J.J., Kimia, B.B.: Segmentation of carpal bones from CT images using skeletally coupled deformable models. Med. Image Anal. 7, 21–45 (2003)

    Article  Google Scholar 

  62. Upal, M.A.: Carpal bone kinematics in combined wrist joint motions may differ from the bone kinematics during simple wrist motions. Biomed. Sci. Instrum. 39, 272–277 (2003)

    Google Scholar 

  63. Chao, E.Y.: Application of graphic-based model for biomechanical analysis of musculoskeletal system. J. Med. Phys. Bioeng. 3, 1–12 (2002)

    Article  Google Scholar 

  64. Lin, H.T., Nakamura, Y., Su, F.C., Hashimoto, J., Nobuhara, K., Chao, E.Y.S.: Use of virtual, interactive, musculoskeletal system (VIMS) in modeling and analysis of shoulder throwing activity. J. Biomech. Eng. T ASME 127, 525–530 (2005)

    Article  Google Scholar 

  65. Buchanan, D., Ural, A.: Finite element modeling of the influence of hand position and bone properties on the Colles` fracture load during a fall. J. Biomech. T ASME 132, 081007 (2010)

    Article  Google Scholar 

  66. Beltran-Fernández, J.A., Hernández-Gómez, L.H., Urriolagoitia-Calderón, G., González-Rebatú, A., Urriolagoitia-Sosa, G.: Biomechanics and numerical evaluation of cervical porcine models considering compressive loads using 2-D classic computer tomography CT, 3-D scanner and 3-D Computed Tomography. Appl. Mech. Mater. 24–25, 287–295 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors kindly acknowledge the grants given by CONACYT, the National Polytechnic Institute and the Institute of Science and Technology of the D. F. (ICyTDF) Also, the support given by Hospital 1° de Octubre of ISSSTE is in high recognition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Héctor Hernández-Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hernández-Gómez, L.H. et al. (2013). Research Advances and Perspective of Multi-Articulated and Robotic Hands. In: Öchsner, A., da Silva, L., Altenbach, H. (eds) Characterization and Development of Biosystems and Biomaterials. Advanced Structured Materials, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31470-4_7

Download citation

Publish with us

Policies and ethics