Skip to main content

Molecular Dynamics Study of Oligomer-Membrane Complexes with Biomedical Relevance

  • Chapter
  • First Online:
Characterization and Development of Biosystems and Biomaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 29))

  • 1193 Accesses

Abstract

The use of liposomes as drug delivery systems (DDS) is well known. However, the stability of liposomes (shelf stability in bloodstream) for this kind of application is an issue. One way to address this problem is to develop polymer-liposome complexes to provide an improved stability as well as better selectivity characteristics. This work reports a molecular dynamics (MD) study on polymer-membrane complexes with biomedical interest. A bilayer membrane was used to mimic the liposome surface, whereas the targeted isopropylacrylamide based polymers were replaced by representative oligomers. The MD simulations were performed by using the united-atoms 53A6 GROMOS force-field, with the GROMACS 4.5.4 package in a Linux cluster. Two oligomers were tested, and their interaction with a bilayer surface was analyzed. In order to understand how the oligomer-membrane complex reacts under different thermal environments, the systems were simulated at several temperatures. It was found that the studied oligomers presented distinct effects in the bilayer. The inclusion of cholesterol at the end of isopropylacrylamide chain enabled the permeation of the oligomer and promoted the bilayer stability. On the other hand, both oligomers showed the common tendency of promoting the penetration of water molecules to the bilayer center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berendsen, H.: GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91(1–3), 43–56 (1995). doi:10.1016/0010-4655(95)00042-E

    Google Scholar 

  2. Berendsen, H.J.C., Postma, J.P.M., Gunsteren, W., Hermans, J.: Interaction models for water in relation to protein hydration. Intermol. Forces 11(1), 331–342 (1981)

    Google Scholar 

  3. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684 (1984). doi:10.1063/1.448118

    Google Scholar 

  4. Betre, H., Liu, W., Zalutsky, M.R., Chilkoti, A., Kraus, V.B., Setton, L.A.: A thermally responsive biopolymer for intra-articular drug delivery. J. Controlled Release 115(2), 175–182 (2006). DOI:10.1016/j.jconrel.2006.07.022

    Google Scholar 

  5. Cho, S.H., White, S.R., Braun, P.V.: Self-healing polymer coatings. Adv. Mater. 21(6), 645–649 (2009). doi:10.1002/adma.200802008

    Google Scholar 

  6. Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98(12), 10089 (1993). doi:10.1063/1.464397

    Google Scholar 

  7. Desai, S., Perkins, J., Harrison, B.S., Sankar, J.: Understanding release kinetics of biopolymer drug delivery microcapsules for biomedical applications. Mater. Sci. Eng., B 168(1–3), 127–131 (2010). doi:10.1016/j.mseb.2009.11.006

    Google Scholar 

  8. Douliez, J.P., Ferrarini, A., Dufourc, E.J.: On the relationship between C-C and C-D order parameters and its use for studying the conformation of lipid acyl chains in biomembranes. J. Chem. Phys. 109(6), 2513 (1998). doi:10.1063/1.476823

    Google Scholar 

  9. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh Ewald method. J. Chem. Phys. 103(19), 8577 (1995). doi:10.1063/1.470117

    Google Scholar 

  10. Gregoriadis, G.: Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol. 13(12), 527–537 (1995). doi:10.1016/S0167-7799(00)89017–4

    Google Scholar 

  11. Hess, B.: P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4(1), 116–122 (2008). doi:10.1021/ct700200b

    Google Scholar 

  12. Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M.: LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18(12), 1463–1472 (1997). doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.3.CO;2-L

    Google Scholar 

  13. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4(3), 435–447 (2008). doi:10.1021/ct700301q

    Google Scholar 

  14. Hirokawa, Y., Tanaka, T.: Volume phase transition in a nonionic gel. J. Chem. Phys. 81(12), 6379 (1984). doi:10.1063/1.447548

    Google Scholar 

  15. Holland, J.W., Hui, C., Cullis, P.R., Madden, T.D.: Poly(ethylene glycol)-lipid conjugates regulate the calcium-induced fusion of liposomes composed of phosphatidylethanolamine and phosphatidylserine. Biochemistry 35(8), 2618–2624 (1996). doi:10.1021/bi952000v

    Google Scholar 

  16. Kucerka, N., Liu, Y., Chu, N., Petrache, H.I., Tristram-Nagle, S., Nagle, J.F.: Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys. J. 88(4), 2626–2637 (2005). doi:10.1529/biophysj.104.056606

    Google Scholar 

  17. Kucerka, N., Tristram-Nagle, S., Nagle, J.F.: Closer look at structure of fully hydrated fluid phase DPPC bilayers. Biophys. J. 90(11), L83–L85 (2006). doi:10.1529/biophysj.106.086017

    Google Scholar 

  18. Kukol, A.: Lipid models for united-atom molecular dynamics simulations of proteins. J. Chem. Theory Comput. 5(3), 615–626 (2009). doi:10.1021/ct8003468

    Google Scholar 

  19. Lee, S.M., Chen, H., Dettmer, C.M., O’Halloran, T.V., Nguyen, S.T.: Polymer-caged lipsomes: a pH-responsive delivery system with high stability. J. Am. Chem. Soc. 129(49), 15096–15097 (2007). doi:10.1021/ja070748i

    Google Scholar 

  20. Levkin, P.A., Svec, F., Frechet, J.M.J.: Porous polymer coatings: a versatile approach to superhydrophobic surfaces. Adv. Funct. Mater. 19(12), 1993–1998 (2009). doi:10.1002/adfm.200801916

    Google Scholar 

  21. Lewis, B.A., Engelman, D.M.: Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J. Mol. Biol. 166(2), 211–217 (1983). doi:10.1016/S0022-2836(83)80007-2

  22. Lindahl, E., Hess, B., van der Spoel, D.: GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 7, 306–317 (2001). doi:10.1007/s008940100045

    Google Scholar 

  23. Mabrey, S., Sturtevant, J.M.: Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. Proc. Natl. Acad. Sci. U S A 73(11), 3862–3866 (1976)

    Article  CAS  Google Scholar 

  24. Madhavan, N., Jones, C.W., Weck, M.: Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design. Acc. Chem. Res. 41(9), 1153–1165 (2008). doi:10.1021/ar800081y

    Google Scholar 

  25. Malde, A.K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P.C., Oostenbrink, C., Mark, A.E.: An Automated force field topology builder (ATB) and repository: version 1.0. J. Chem. Theory Comput. 7(12), 4026–4037 (2011). doi:10.1021/ct200196m

    Google Scholar 

  26. Miyamoto, S., Kollman, P.A.: Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13(8), 952–962 (1992). doi:10.1002/jcc.540130805

  27. Oh, J.K., Lee, D.I., Park, J.M.: Biopolymer-based microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 34(12), 1261–1282 (2009). doi:10.1016/j.progpolymsci.2009.08.001

    Google Scholar 

  28. Oostenbrink, C., Soares, T.A., van Der Vegt, N.F.A., van Gunsteren, W.F.: Validation of the 53A6 GROMOS force field. Eur. Biophys. J. 34(4), 273–284 (2005). doi:10.1007/s00249-004-0448-6

    Google Scholar 

  29. Oostenbrink, C., Villa, A., Mark, A.E., van Gunsteren, W.F.: A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25(13), 1656–1676 (2004). doi:10.1002/jcc.20090

    Google Scholar 

  30. Paasonen, L., Romberg, B., Storm, G., Yliperttula, M., Urtti, A., Hennink, W.E.: Temperature-sensitive poly(N-(2-hydroxypropyl)methacrylamide mono/dilactate)-coated liposomes for triggered contents release. Bioconjugate Chem. 18(6), 2131–2136 (2007). doi:10.1021/bc700245p

    Google Scholar 

  31. Petrache, H.I., Tristram-Nagle, S., Nagle, J.F.: Fluid phase structure of EPC and DMPC bilayers. Chem. Phys. Lipids 95(1), 83–94 (1998)

    Article  CAS  Google Scholar 

  32. Schüttelkopf, A.W., van Aalten, D.M.F.: PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D 60, 1355–1363 (2004). doi:10.1107/S0907444904011679

    Google Scholar 

  33. Shukla, R., Murali, V., Bhansali, A.: Flip chip CPU package technology at Intel: a technology and manufacturing overview. In: 1999 Proceedings. 49th Electronic Components and Technology Conference (Cat. No. 99CH36299), pp. 945–949 (1999). doi:10.1109/ECTC.1999.776299

  34. Spoel, D.V.D., Lindahl, E., Hess, B., Buuren, A.R.V., Apol, E., Meulenhoff, P.J., Tieleman, D.P., Sijbers, A.L.T.M., Feenstra, K.A., Drunen, R.V., Berendsen, H.J.C.: Gromacs User Manual Version 4.5. University of Groningen, Groningen (2010)

    Google Scholar 

  35. Sulkowski, W., Pentak, D., Nowak, K., Sulkowska, A.: The influence of temperature, cholesterol content and pH on liposome stability. J. Mol. Struct. 744–747, 737–747 (2005). doi:10.1016/j.molstruc.2004.11.075

  36. Tristram-Nagle, S., Liu, Y., Legleiter, J., Nagle, J.F.: Structure of gel phase DMPC determined by X-ray diffraction. Biophys. J. 83(6), 3324–3335 (2002). doi:10.1016/S0006-3495(02)75333–2

    Google Scholar 

  37. Ulrich, A.S.: Biophysical aspects of using liposomes as delivery vehicles. Biosci. Rep. 22(2), 129–150 (2002)

    Article  CAS  Google Scholar 

  38. Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C.: GROMACS: fast, flexible, and free. J. Comput. Chem. 26(16), 1701–1718 (2005). doi:10.1002/jcc.20291

  39. Wu, C., Zhou, S.: Volume phase transition of swollen gels: discontinuous or continuous? Macromolecules 30(3), 574–576 (1997). doi:10.1021/ma960499a

  40. Wu, C., Zhou, S., Au-yeung, S., Jiang, S.: Volume phase transition of spherical microgel particles. Angew. Makromol. Chem. 240(1), 123–136 (1996). doi:10.1002/apmc.1996.052400111

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André F. Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferreira, A.F., Alves, P., Coelho, J.F., Gil, M.H., Simões, P.N. (2013). Molecular Dynamics Study of Oligomer-Membrane Complexes with Biomedical Relevance. In: Öchsner, A., da Silva, L., Altenbach, H. (eds) Characterization and Development of Biosystems and Biomaterials. Advanced Structured Materials, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31470-4_4

Download citation

Publish with us

Policies and ethics