Skip to main content

Genome Organization of Peste des Petits Ruminants Virus

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Animal Sciences ((BRIEFSANIMAL))

Abstract

Peste des Petits Ruminants (PPR) virions are enveloped, pleomorphic particles containing a genome of single stranded RNA that is enclosed in a ribonucleoprotein core. The PPRV genome is 15,948 nucleotides (nts) long, which is the longest of all the morbillivirus members except for a recently described feline morbillivirus, which is revealed to be 16,050 bases long due to unusually long 5′ trailer sequence. The genome of PPRV encodes for eight genes in the order 3′-N–P/C/V-M-F-HN-L-5′. The mean diameter of PPR virions (400–500 nm) is slightly larger than rinderpest virus (RPV) (300 nm). As a typical feature for all members of the genus morbillivirus, the PPRV genome length follows the “rule of six”, but carries a certain degree of flexibility by accommodation of +1, +2 and −1 nts, which is a unique property of PPRV among morbilliviruses. In this chapter, all of the known features of the PPRV genome structure and biology are discussed. Additionally, all of the structural and nonstructural proteins are described comprehensively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bailey D, Banyard A, Dash P, Ozkul A, Barrett T (2005) Full genome sequence of peste des petits ruminants virus, a member of the Morbillivirus genus. Virus Res 110(1–2):119–124

    Article  PubMed  CAS  Google Scholar 

  • Bailey D, Chard LS, Dash P, Barrett T, Banyard AC (2007) Reverse genetics for peste-des-petits-ruminants virus (PPRV): promoter and protein specificities. Virus Res 126(1–2):250–255

    Article  PubMed  CAS  Google Scholar 

  • Baron MD, Barrett T (2000) Rinderpest viruses lacking the C and V proteins show specific defects in growth and transcription of viral RNAs. J Virol 74(6):2603–2611

    Article  PubMed  CAS  Google Scholar 

  • Baron MD, Goatley L, Barrett T (1994) Cloning and sequence analysis of the matrix (M) protein gene of rinderpest virus and evidence for another bovine morbillivirus. Virology 200(1):121–129

    Article  PubMed  CAS  Google Scholar 

  • Barrett T, Ashley CB, Diallo A (eds) (2006) Molecular biology of the morbilliviruses. In: Rinderpest and Peste des Petits Ruminants Virus Plagues of Large and Small Ruminants, 2nd edn. Elsevier, Academic Press, London

    Google Scholar 

  • Bellini WJ, Englund G, Rozenblatt S, Arnheiter H, Richardson CD (1985) Measles virus P gene codes for two proteins. J Virol 53(3):908–919

    PubMed  CAS  Google Scholar 

  • Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294(5):1351–1362

    Article  PubMed  CAS  Google Scholar 

  • Blumberg BM, Crowley JC, Silverman JI, Menonna J, Cook SD, Dowling PC (1988) Measles virus L protein evidences elements of ancestral RNA polymerase. Virology 164(2):487–497

    Article  PubMed  CAS  Google Scholar 

  • Bodjo SC, Kwiatek O, Diallo A, Albina E, Libeau G (2007) Mapping and structural analysis of B-cell epitopes on the morbillivirus nucleoprotein amino terminus. J gen virol 88(Pt 4):1231–1242

    Article  PubMed  CAS  Google Scholar 

  • Bodjo SC, Lelenta M, Couacy-Hymann E, Kwiatek O, Albina E, Gargani D, Libeau G, Diallo A (2008) Mapping the Peste des Petits Ruminants virus nucleoprotein: identification of two domains involved in protein self-association. Virus Res 131(1):23–32

    Article  PubMed  CAS  Google Scholar 

  • Boxer EL, Nanda SK, Baron MD (2009) The rinderpest virus non-structural C protein blocks the induction of type 1 interferon. Virology 385(1):134–142

    Article  PubMed  CAS  Google Scholar 

  • Brown DD, Collins FM, Duprex WP, Baron MD, Barrett T, Rima BK (2005) ‘Rescue’ of mini-genomic constructs and viruses by combinations of morbillivirus N, P and L proteins. J gen virol 86(Pt 4):1077–1081

    Article  PubMed  CAS  Google Scholar 

  • Buckland R, Giraudon P, Wild F (1989) Expression of measles virus nucleoprotein in Escherichia coli: use of deletion mutants to locate the antigenic sites. J gen virol 70(Pt 2):435–441

    Article  PubMed  CAS  Google Scholar 

  • Bundza A, Afshar A, Dukes TW, Myers DJ, Dulac GC, Becker SA (1988) Experimental peste des petits ruminants (goat plague) in goats and sheep. Can J Vet Res (Revue canadienne de recherche veterinaire) 52(1):46–52

    CAS  Google Scholar 

  • Cartee TL, Megaw AG, Oomens AG, Wertz GW (2003) Identification of a single amino acid change in the human respiratory syncytial virus L protein that affects transcriptional termination. J Virol 77(13):7352–7360

    Article  PubMed  CAS  Google Scholar 

  • Chambers R, Takimoto T (2009) Antagonism of innate immunity by paramyxovirus accessory proteins. Viruses 1(3):574–593

    Article  PubMed  CAS  Google Scholar 

  • Chard LS, Bailey DS, Dash P, Banyard AC, Barrett T (2008) Full genome sequences of two virulent strains of peste-des-petits ruminants virus, the Cote d’Ivoire 1989 and Nigeria 1976 strains. Virus Res 136(1–2):192–197

    Article  PubMed  CAS  Google Scholar 

  • Choi KS, Nah JJ, Ko YJ, Kang SY, Joo YS (2003) Localization of antigenic sites at the amino-terminus of rinderpest virus N protein using deleted N mutants and monoclonal antibody. J Vet Sci 4(2):167–173

    PubMed  Google Scholar 

  • Choi KS, Nah JJ, Ko YJ, Kang SY, Yoon KJ, Jo NI (2005) Antigenic and immunogenic investigation of B-cell epitopes in the nucleocapsid protein of peste des petits ruminants virus. Clin Diagn Lab Immunol 12(1):114–121

    PubMed  CAS  Google Scholar 

  • Ciancanelli MJ, Basler CF (2006) Mutation of YMYL in the Nipah virus matrix protein abrogates budding and alters subcellular localization. J Virol 80(24):12070–12078

    Article  PubMed  CAS  Google Scholar 

  • Das SC, Baron MD, Barrett T (2000) Recovery and characterization of a chimeric rinderpest virus with the glycoproteins of peste-des-petits-ruminants virus: homologous F and H proteins are required for virus viability. J Virol 74(19):9039–9047

    Article  PubMed  CAS  Google Scholar 

  • Dechamma HJ, Dighe V, Kumar CA, Singh RP, Jagadish M, Kumar S (2006) Identification of T-helper and linear B epitope in the hypervariable region of nucleocapsid protein of PPRV and its use in the development of specific antibodies to detect viral antigen. Vet Microbiol 118(3–4):201–211

    Article  PubMed  CAS  Google Scholar 

  • Dhar P, Muthuchelvan D, Sanyal A, Kaul R, Singh RP, Singh RK, Bandyopadhyay SK (2006) Sequence analysis of the haemagglutinin and fusion protein genes of peste-des-petits ruminants vaccine virus of Indian origin. Virus Genes 32(1):71–78

    Article  PubMed  CAS  Google Scholar 

  • Diallo A (1990) Morbillivirus group: genome organisation and proteins. Vet Microbiol 23(1–4):155–163

    Article  PubMed  CAS  Google Scholar 

  • Diallo A, Barrett T, Barbron M, Meyer G, Lefevre PC (1994) Cloning of the nucleocapsid protein gene of peste-des-petits-ruminants virus: relationship to other morbilliviruses. J gen virol 75(Pt 1):233–237

    Article  PubMed  CAS  Google Scholar 

  • Diallo A, Barrett T, Lefevre PC, Taylor WP (1987) Comparison of proteins induced in cells infected with rinderpest and peste des petits ruminants viruses. J gen virol 68(Pt 7):2033–2038

    Article  PubMed  CAS  Google Scholar 

  • Diallo A, Minet C, Le Goff C, Berhe G, Albina E, Libeau G, Barrett T (2007) The threat of peste des petits ruminants: progress in vaccine development for disease control. Vaccine 25(30):5591–5597

    Article  PubMed  CAS  Google Scholar 

  • Durojaiye OA, Taylor WP, Smale C (1985) The ultrastructure of peste des petits ruminants virus. J Vet Med Ser B Infect Dis Immunol Food Hyg Vet Public Health (Zentralblatt Fur Veterinarmedizin Reihe B) 32(6):460–465

    CAS  Google Scholar 

  • Flanagan EB, Ball LA, Wertz GW (2000) Moving the glycoprotein gene of vesicular stomatitis virus to promoter-proximal positions accelerates and enhances the protective immune response. J Virol 74(17):7895–7902

    Article  PubMed  CAS  Google Scholar 

  • Gattiker A, Gasteiger E, Bairoch A (2002) ScanProsite: a reference implementation of a PROSITE scanning tool. Applied bioinformatics 1(2):107–108

    PubMed  CAS  Google Scholar 

  • Gibbs EP, Taylor WP, Lawman MJ, Bryant J (1979) Classification of peste des petits ruminants virus as the fourth member of the genus Morbillivirus. Intervirology 11(5):268–274

    Article  PubMed  CAS  Google Scholar 

  • Giraudon P, Jacquier MF, Wild TF (1988) Antigenic analysis of African measles virus field isolates: identification and localisation of one conserved and two variable epitope sites on the NP protein. Virus Res 10(2–3):137–152

    Article  PubMed  CAS  Google Scholar 

  • Gombart AF, Hirano A, Wong TC (1993) Conformational maturation of measles virus nucleocapsid protein. J Virol 67(7):4133–4141

    PubMed  CAS  Google Scholar 

  • Hoffman MA, Banerjee AK (2000) Precise mapping of the replication and transcription promoters of human parainfluenza virus type 3. Virology 269(1):201–211

    Article  PubMed  CAS  Google Scholar 

  • Horikami SM, Smallwood S, Bankamp B, Moyer SA (1994) An amino-proximal domain of the L protein binds to the P protein in the measles virus RNA polymerase complex. Virology 205(2):540–545

    Article  PubMed  CAS  Google Scholar 

  • Huber M, Cattaneo R, Spielhofer P, Orvell C, Norrby E, Messerli M, Perriard JC, Billeter MA (1991) Measles virus phosphoprotein retains the nucleocapsid protein in the cytoplasm. Virology 185(1):299–308

    Article  PubMed  CAS  Google Scholar 

  • Johansson K, Bourhis JM, Campanacci V, Cambillau C, Canard B, Longhi S (2003) Crystal structure of the measles virus phosphoprotein domain responsible for the induced folding of the C-terminal domain of the nucleoprotein. J Biol Chem 278(45):44567–44573

    Article  PubMed  CAS  Google Scholar 

  • Karlin D, Longhi S, Canard B (2002) Substitution of two residues in the measles virus nucleoprotein results in an impaired self-association. Virology 302(2):420–432

    Article  PubMed  CAS  Google Scholar 

  • Kaushik R, Shaila MS (2004) Cellular casein kinase II-mediated phosphorylation of rinderpest virus P protein is a prerequisite for its role in replication/transcription of the genome. J Gen Virol 85(Pt 3):687–691

    Article  PubMed  CAS  Google Scholar 

  • Keita D, Servan de Almeida R, Libeau G, Albina E (2008) Identification and mapping of a region on the mRNA of Morbillivirus nucleoprotein susceptible to RNA interference. Antiviral Res 80(2):158–167

    Article  PubMed  CAS  Google Scholar 

  • Kingston RL, Baase WA, Gay LS (2004) Characterization of nucleocapsid binding by the measles virus and mumps virus phosphoproteins. J Virol 78(16):8630–8640

    Article  PubMed  CAS  Google Scholar 

  • Kolakofsky D, Pelet T, Garcin D, Hausmann S, Curran J, Roux L (1998) Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited. J Virol 72(2):891–899

    PubMed  CAS  Google Scholar 

  • Kozak M (1986) Regulation of protein synthesis in virus-infected animal cells. Adv Virus Res 31:229–292

    Article  PubMed  CAS  Google Scholar 

  • Laine D, Trescol-Biemont MC, Longhi S, Libeau G, Marie JC, Vidalain PO, Azocar O, Diallo A, Canard B, Rabourdin-Combe C, Valentin H (2003) Measles virus (MV) nucleoprotein binds to a novel cell surface receptor distinct from FcgammaRII via its C-terminal domain: role in MV-induced immunosuppression. J Virol 77(21):11332–11346

    Article  PubMed  CAS  Google Scholar 

  • Lamb A, Kolakofsky D (2001) Paramyxoviridae: the viruses and their replication. Fields virology, 4th edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Langedijk JP, Daus FJ, van Oirschot JT (1997) Sequence and structure alignment of Paramyxoviridae attachment proteins and discovery of enzymatic activity for a morbillivirus hemagglutinin. J Virol 71(8):6155–6167

    PubMed  CAS  Google Scholar 

  • Liston P, DiFlumeri C, Briedis DJ (1995) Protein interactions entered into by the measles virus P, V, and C proteins. Virus Res 38(2–3):241–259

    Article  PubMed  CAS  Google Scholar 

  • Mahapatra M, Parida S, Egziabher BG, Diallo A, Barrett T (2003) Sequence analysis of the phosphoprotein gene of peste des petits ruminants (PPR) virus: editing of the gene transcript. Virus Res 96(1–2):85–98

    Article  PubMed  CAS  Google Scholar 

  • Malur AG, Choudhary SK, De BP, Banerjee AK (2002) Role of a highly conserved NH(2)-terminal domain of the human parainfluenza virus type 3 RNA polymerase. J Virol 76(16):8101–8109

    Article  PubMed  CAS  Google Scholar 

  • Meyer G, Diallo A (1995) The nucleotide sequence of the fusion protein gene of the peste des petits ruminants virus: the long untranslated region in the 5′-end of the F-protein gene of morbilliviruses seems to be specific to each virus. Virus Res 37(1):23–35

    Article  PubMed  CAS  Google Scholar 

  • Mioulet V, Barrett T, Baron MD (2001) Scanning mutagenesis identifies critical residues in the rinderpest virus genome promoter. J Gen Virol 82(Pt 12):2905–2911

    PubMed  CAS  Google Scholar 

  • Moll M, Klenk HD, Maisner A (2002) Importance of the cytoplasmic tails of the measles virus glycoproteins for fusogenic activity and the generation of recombinant measles viruses. J Virol 76(14):7174–7186

    Article  PubMed  CAS  Google Scholar 

  • Murphy SK, Parks GD (1999) RNA replication for the paramyxovirus simian virus 5 requires an internal repeated (CGNNNN) sequence motif. J Virol 73(1):805–809

    PubMed  CAS  Google Scholar 

  • Muthuchelvan D, Sanyal A, Singh RP, Hemadri D, Sen A, Sreenivasa BP, Singh RK, Bandyopadhyay SK (2005) Comparative sequence analysis of the large polymerase protein (L) gene of peste-des-petits ruminants (PPR) vaccine virus of Indian origin. Arch Virol 150(12):2467–2481

    Article  PubMed  CAS  Google Scholar 

  • Muthuchelvan D, Sanyal A, Sreenivasa BP, Saravanan P, Dhar P, Singh RP, Singh RK, Bandyopadhyay SK (2006) Analysis of the matrix protein gene sequence of the Asian lineage of peste-des-petits ruminants vaccine virus. Vet Microbiol 113(1–2):83–87

    Article  PubMed  CAS  Google Scholar 

  • Norrby E, Sheshberadaran H, McCullough KC, Carpenter WC, Orvell C (1985) Is rinderpest virus the archevirus of the Morbillivirus genus? Intervirology 23(4):228–232

    Article  PubMed  CAS  Google Scholar 

  • Ohno S, Seki F, Ono N, Yanagi Y (2003) Histidine at position 61 and its adjacent amino acid residues are critical for the ability of SLAM (CD150) to act as a cellular receptor for measles virus. J Gen Vir 84(Pt 9):2381–2388

    Article  CAS  Google Scholar 

  • Patterson JB, Thomas D, Lewicki H, Billeter MA, Oldstone MB (2000) V and C proteins of measles virus function as virulence factors in vivo. Virology 267(1):80–89

    Article  PubMed  CAS  Google Scholar 

  • Pawar RM, Raj GD, Kumar TM, Raja A, Balachandran C (2008) Effect of siRNA mediated suppression of signaling lymphocyte activation molecule on replication of peste des petits ruminants virus in vitro. Virus Res 136(1–2):118–123

    Article  PubMed  CAS  Google Scholar 

  • Plemper RK, Hammond AL, Cattaneo R (2001) Measles virus envelope glycoproteins hetero-oligomerize in the endoplasmic reticulum. J Biol Chem 276(47):44239–44246

    Article  PubMed  CAS  Google Scholar 

  • Poch O, Blumberg BM, Bougueleret L, Tordo N (1990) Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. J Gen Virol 71(Pt 5):1153–1162

    Article  PubMed  CAS  Google Scholar 

  • Rahaman A, Srinivasan N, Shamala N, Shaila MS (2003) The fusion core complex of the peste des petits ruminants virus is a six-helix bundle assembly. Biochemistry 42(4):922–931

    Article  PubMed  CAS  Google Scholar 

  • Rahaman A, Srinivasan N, Shamala N, Shaila MS (2004) Phosphoprotein of the rinderpest virus forms a tetramer through a coiled coil region important for biological function. A structural insight. J Biol Chem 279(22):23606–23614

    Article  PubMed  CAS  Google Scholar 

  • Renukaradhya GJ, Sinnathamby G, Seth S, Rajasekhar M, Shaila MS (2002) Mapping of B-cell epitopic sites and delineation of functional domains on the hemagglutinin-neuraminidase protein of peste des petits ruminants virus. Virus Res 90(1–2):171–185

    Article  PubMed  CAS  Google Scholar 

  • Riedl P, Moll M, Klenk HD, Maisner A (2002) Measles virus matrix protein is not cotransported with the viral glycoproteins but requires virus infection for efficient surface targeting. Virus Res 83(1–2):1–12

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Masuda M, Miura R, Yoneda M, Kai C (2006) Morbillivirus nucleoprotein possesses a novel nuclear localization signal and a CRM1-independent nuclear export signal. Virology 352(1):121–130

    Article  PubMed  CAS  Google Scholar 

  • Servan de Almeida R, Keita D, Libeau G, Albina E (2007) Control of ruminant morbillivirus replication by small interfering RNA. J Gen Virol 88(Pt 8):2307–2311

    Article  PubMed  CAS  Google Scholar 

  • Seth S, Shaila MS (2001) The hemagglutinin-neuraminidase protein of peste des petits ruminants virus is biologically active when transiently expressed in mammalian cells. Virus Res 75(2):169–177

    Article  PubMed  CAS  Google Scholar 

  • Shiell BJ, Gardner DR, Crameri G, Eaton BT, Michalski WP (2003) Sites of phosphorylation of P and V proteins from Hendra and Nipah viruses: newly emerged members of Paramyxoviridae. Virus Res 92(1):55–65

    Article  PubMed  CAS  Google Scholar 

  • Sweetman DA, Miskin J, Baron MD (2001) Rinderpest virus C and V proteins interact with the major (L) component of the viral polymerase. Virology 281(2):193–204

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Ohno S, Seki F, Nakatsu Y, Tahara M, Yanagi Y (2005) Long untranslated regions of the measles virus M and F genes control virus replication and cytopathogenicity. J Virol 79(22):14346–14354

    Article  PubMed  CAS  Google Scholar 

  • Tatsuo H, Okuma K, Tanaka K, Ono N, Minagawa H, Takade A, Matsuura Y, Yanagi Y (2000) Virus entry is a major determinant of cell tropism of Edmonston and wild-type strains of measles virus as revealed by vesicular stomatitis virus pseudotypes bearing their envelope proteins. J Virol 74(9):4139–4145

    Article  PubMed  CAS  Google Scholar 

  • Tober C, Seufert M, Schneider H, Billeter MA, Johnston IC, Niewiesk S, ter Meulen V, Schneider-Schaulies S (1998) Expression of measles virus V protein is associated with pathogenicity and control of viral RNA synthesis. J Virol 72(10):8124–8132

    PubMed  CAS  Google Scholar 

  • Varsanyi TM, Utter G, Norrby E (1984) Purification, morphology and antigenic characterization of measles virus envelope components. J Gen Virol 65(Pt 2):355–366

    Article  PubMed  CAS  Google Scholar 

  • Vongpunsawad S, Oezgun N, Braun W, Cattaneo R (2004) Selectively receptor-blind measles viruses: Identification of residues necessary for SLAM- or CD46-induced fusion and their localization on a new hemagglutinin structural model. J Virol 78(1):302–313

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Hirano A, Stenglein S, Nelson J, Thomas G, Wong TC (1995) Engineered serine protease inhibitor prevents furin-catalyzed activation of the fusion glycoprotein and production of infectious measles virus. J Virol 69(5):3206–3210

    PubMed  CAS  Google Scholar 

  • Woo PC, Lau SK, Wong BH, Fan RY, Wong AY, Zhang AJ, Wu Y, Choi GK, Li KS, Hui J, Wang M, Zheng BJ, Chan KH, Yuen KY (2012) Feline morbillivirus, a previously undescribed paramyxovirus associated with tubulointerstitial nephritis in domestic cats. Proc Nat Acad Sci U S A 109(14):5435–5440

    Article  CAS  Google Scholar 

  • Yoneda M, Bandyopadhyay SK, Shiotani M, Fujita K, Nuntaprasert A, Miura R, Baron MD, Barrett T, Kai C (2002) Rinderpest virus H protein: role in determining host range in rabbits. J Gen Virol 83(Pt 6):1457–1463

    PubMed  CAS  Google Scholar 

  • Yoneda M, Miura R, Barrett T, Tsukiyama-Kohara K, Kai C (2004) Rinderpest virus phosphoprotein gene is a major determinant of species-specific pathogenicity. J Virol 78(12):6676–6681

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Glendening C, Linke H, Parks CL, Brooks C, Udem SA, Oglesbee M (2002) Identification and characterization of a regulatory domain on the carboxyl terminus of the measles virus nucleocapsid protein. J Virol 76(17):8737–8746

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Munir .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Munir, M., Zohari, S., Berg, M. (2013). Genome Organization of Peste des Petits Ruminants Virus. In: Molecular Biology and Pathogenesis of Peste des Petits Ruminants Virus. SpringerBriefs in Animal Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31451-3_1

Download citation

Publish with us

Policies and ethics