Advertisement

Faster Algorithm for Solving Hard Knapsacks for Moderate Message Length

  • Yuji Nagashima
  • Noboru Kunihiro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7372)

Abstract

At Eurocrypt2011, Becker, Coron and Joux proposed an algorithm for solving hard knapsacks, i.e., knapsacks with a density close to 1. Their algorithm solves hard knapsacks in time \(\tilde{O}(2^{0.2909n})\). In this paper, we evaluate their algorithm by O notation and prove that the running time is O(n 3.5 ·20.2909n ). Furthermore, we extend their algorithm and propose the algorithm of which running time is O(n 3 ·20.2919n ). Asymptotic running time of our algorithm is not faster. However, when n < 6312, our algorithm can solve subset sum problem faster than algorithm of Becker, Coron and Joux.

Keywords

knapsack cryptosystem subset sum problem hard knapsacks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Becker, A., Coron, J.S., Joux, A.: Improved Generic Algorithms for Hard Knapsacks. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 364–385. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Coster, M.J., Joux, A., LaMacchia, B.A., Odlyzko, A.M., Schnorr, C.P., Stern, J.: Improved Low-Density Subset Algorithms. Computational Complexity 2, 111–128 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman (1979)Google Scholar
  4. 4.
    Howgrave-Graham, N., Joux, A.: New Generic Algorithms for Hard Knapsacks. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Lagarias, J.C., Odlyzko, A.M.: Solving Low-Density Subset Sum Problems. Journal of the Association for Computing Machineary 32(1), 229–246 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Merkle, R.C., Hellman, M.E.: Hiding Information and Signatures in Trapdoor Knapsacks. IEEE Transactions on Information Theory 24, 525–530 (1978)CrossRefGoogle Scholar
  7. 7.
    Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) Algorithm for Certain NP-Complete Problems. SIAM Journal on Computing 10(3), 456–464 (1981)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yuji Nagashima
    • 1
  • Noboru Kunihiro
    • 1
  1. 1.The University of TokyoJapan

Personalised recommendations