Advertisement

Revocable Identity-Based Encryption from Lattices

  • Jie Chen
  • Hoon Wei Lim
  • San Ling
  • Huaxiong Wang
  • Khoa Nguyen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7372)

Abstract

In this paper, we present an identity-based encryption (IBE) scheme from lattices with efficient key revocation. We adopt multiple trapdoors from the Agrawal-Boneh-Boyen and Gentry-Peikerty-Vaikuntanathan lattice IBE schemes to realize key revocation, which in turn, makes use of binary-tree data structure. Using our scheme, key update requires logarithmic complexity in the maximal number of users and linear in the number of revoked users for the relevant key authority. We prove that our scheme is selective secure in the standard model and under the LWE assumption, which is as hard as the worst-case approximating short vectors on arbitrary lattices.

Keywords

Lattice-based Cryptography Identity-based Encryption Key Revocation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Boneh, D., Boyen, X.: Lattice Basis Delegation in Fixed Dimension and Shorter-Ciphertext Hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (h)ibe in the standard model, http://crypto.stanford.edu/~dabo/pubs/papers/latticebb.pdf
  4. 4.
    Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Fuzzy identity based encryption from lattices. IACR Cryptology ePrint Archive, 2011/414 (2011)Google Scholar
  5. 5.
    Aiello, W., Lodha, S.P., Ostrovsky, R.: Fast Digital Identity Revocation. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 137–152. Springer, Heidelberg (1998)Google Scholar
  6. 6.
    Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: STOC, pp. 99–108 (1996)Google Scholar
  7. 7.
    Ajtai, M.: Generating Hard Instances of the Short Basis Problem. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: STOC, pp. 284–293 (1997)Google Scholar
  9. 9.
    Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: STACS, pp. 75–86 (2009)Google Scholar
  10. 10.
    Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revocation. In: ACM Conference on Computer and Communications Security, pp. 417–426 (2008)Google Scholar
  11. 11.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption without pairings. In: FOCS, pp. 647–657 (2007)Google Scholar
  14. 14.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Delegate a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Chen, J., Lim, H.W., Ling, S., Wang, H., Nguyen, T.T.K.: Revocable identity-based encryption from lattices. IACR Cryptology ePrint Archive, 2011/583 (2011)Google Scholar
  16. 16.
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: IMA Int. Conf., pp. 360–363 (2001)Google Scholar
  17. 17.
    Cramer, R., Damgård, I.: On the Amortized Complexity of Zero-Knowledge Protocols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 177–191. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)Google Scholar
  20. 20.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC, pp. 197–206 (2008)Google Scholar
  21. 21.
    Libert, B., Vergnaud, D.: Towards Black-Box Accountable Authority IBE with Short Ciphertexts and Private Keys. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 235–255. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Libert, B., Vergnaud, D.: Adaptive-ID Secure Revocable Identity-Based Encryption. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 1–15. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions from worst-case complexity assumptions. In: FOCS, pp. 356–365 (2002)Google Scholar
  24. 24.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller. IACR Cryptology ePrint Archive, 2011/501 (2011)Google Scholar
  25. 25.
    Naor, M., Nissim, K.: Certificate revocation and certificate update. IEEE Journal on Selected Areas in Communications 18(4), 561–570 (2000)CrossRefGoogle Scholar
  26. 26.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: STOC, pp. 333–342 (2009)Google Scholar
  27. 27.
    Regev, O.: New lattice-based cryptographic constructions. J. ACM 51(6), 899–942 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93 (2005)Google Scholar
  29. 29.
    Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
    Sepahi, R., Steinfeld, R., Pieprzyk, J.: Lattice-Based Completely Non-malleable PKE in the Standard Model (Poster). In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 407–411. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  31. 31.
    Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  32. 32.
    Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  33. 33.
    Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jie Chen
    • 1
  • Hoon Wei Lim
    • 1
  • San Ling
    • 1
  • Huaxiong Wang
    • 1
  • Khoa Nguyen
    • 1
  1. 1.Division of Mathematical Sciences, School of Physical & Mathematical SciencesNanyang Technological UniversitySingapore

Personalised recommendations