Advertisement

Threshold Ciphertext Policy Attribute-Based Encryption with Constant Size Ciphertexts

  • Aijun Ge
  • Rui Zhang
  • Cheng Chen
  • Chuangui Ma
  • Zhenfeng Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7372)

Abstract

In PKC 2010, Herranz et al. proposed the first ciphertext policy attribute-based encryption (CP-ABE) scheme with constant size ciphertexts for threshold predicates. However, their scheme was only secure against chosen plaintext attacks (CPA), which was impossible to obtain security against chosen ciphertext attacks (CCA) in the standard model, and they left open the following three problems for CP-ABE schemes with constant size ciphertexts, i.e., how to achieve full security (i.e., not only the selective security), CCA security in the standard model, and security reduction to a more standard mathematical problem. In this paper, we answer the last two of these three problems affirmatively. Towards our goal, we first design a CPA secure threshold CP-ABE scheme, which can be further upgraded to the CCA security. The security of our schemes can be proved under the decisional q-Bilinear Diffie-Hellman Exponent (q-BDHE) assumption in the selective model. To the best of our knowledge, this is the first construction of CCA secure CP-ABE scheme with constant size ciphertexts that can support flexible threshold access structure in the standard model.

Keywords

attribute-based encryption constant size ciphertext chosen ciphertext security threshold access structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Attrapadung, N., Libert, B.: Functional Encryption for Inner Product: Achieving Constant-Size Ciphertexts with Adaptive Security or Support for Negation. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 384–402. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Attrapadung, N., Libert, B., de Panafieu, E.: Expressive Key-Policy Attribute-Based Encryption with Constant-Size Ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Cheung, L., Newport, C.: Provably secure ciphertext policy ABE. In: ACM CCS 2007, pp. 456–465. ACM, New York (2007)CrossRefGoogle Scholar
  6. 6.
    Chen, C., Zhang, Z., Feng, D.: Efficient Ciphertext Policy Attribute-Based Encryption with Constant-Size Ciphertext and Constant Computation-Cost. In: Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 84–101. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Delerablée, C., Pointcheval, D.: Dynamic Threshold Public-Key Encryption. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 317–334. Springer, Heidelberg (2008)Google Scholar
  8. 8.
    Emura, K., Miyaji, A., Nomura, A., Omote, K., Soshi, M.: A Ciphertext-Policy Attribute-Based Encryption Scheme with Constant Ciphertext Length. In: Bao, F., Li, H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 13–23. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Fujisaki, E., Okamoto, T.: How to Enhance the Security of Public-Key Encryption at Minimum Cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 53–68. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM CCS 2006, pp. 89–98. ACM, New York (2006)CrossRefGoogle Scholar
  11. 11.
    Herranz, J., Laguillaumie, F., Ràfols, C.: Constant Size Ciphertexts in Threshold Attribute-Based Encryption. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 19–34. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Lai, J., Deng, R.H., Liu, S., Kou, W.: Efficient CCA-Secure PKE from Identity-Based Techniques. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 132–147. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Functional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Lewko, A., Sahai, A., Waters, B.: Revocation systems with very small private keys. In: IEEE Symposium on Security and Privacy, pp. 273–285 (2010)Google Scholar
  16. 16.
    Lewko, A., Waters, B.: Decentralizing Attribute-Based Encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Okamoto, T., Takashima, K.: Fully Secure Functional Encryption with General Relations from the Decisional Linear Assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)Google Scholar
  18. 18.
    Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  20. 20.
    Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Waters, B.: Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and Provably Secure Realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: Generic Constructions for Chosen-Ciphertext Secure Attribute Based Encryption. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 71–89. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Zhang, R.: Tweaking TBE/IBE to PKE Transforms with Chameleon Hash Functions. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 323–339. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Zhou, Z., Huang, D.: On efficient ciphertext-policy attribute based encryption and broadcast encryption. In: ACM CCS 2010, pp. 753–755. ACM, New York (2010), the full version, http://eprint.iacr.org/2010/395 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Aijun Ge
    • 1
  • Rui Zhang
    • 2
  • Cheng Chen
    • 2
  • Chuangui Ma
    • 1
  • Zhenfeng Zhang
    • 2
  1. 1.Department of Applied MathematicsZhengzhou Information Science and Technology InstituteZhengzhouChina
  2. 2.State Key Laboratory of Information Security (SKLOIS), Institute of Information Engineering (IIE)Chinese Academy of Sciences (CAS)BeijingChina

Personalised recommendations