Advertisement

A Generic Construction of Accountable Decryption and Its Applications

  • Xuhua Zhou
  • Xuhua Ding
  • Kefei Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7372)

Abstract

We propose a new cryptographic notion called accountable decryption by which, given a ciphertext, a decryptor proves both the correctness of his decryption and the plaintext authenticity to a public verifier. We define its security from three aspects: message confidentiality, soundness of verifiability and plaintext authenticity. Given any asymmetric or symmetric key encryption scheme, we propose a method to construct the corresponding accountable decryption scheme with provable security. To demonstrate its applications, we also present the constructions for predicate encryption and for public-key encryption with keyword search.

Keywords

Accountable Decryption Verifiable Decryption Plaintext Authenticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Functional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Neuman, B., Ts’o, T.: Kerberos: an authentication service for computer networks. IEEE Communications Magazine 32, 33–38 (1994)CrossRefGoogle Scholar
  5. 5.
    Camenisch, J.L., Shoup, V.: Practical Verifiable Encryption and Decryption of Discrete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Selvi, S.S.D., Sree Vivek, S., Pandu Rangan, C.: Identity Based Public Verifiable Signcryption Scheme. In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS, vol. 6402, pp. 244–260. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Chow, S.S.M.: Verifiable Pairing and Its Applications. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 170–187. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Chow, S.S.M., Yiu, S., Hui, L., Chow, K.: Efficient Forward and Provably Secure ID-Based Signcryption Scheme with Public Verifiability and Public Ciphertext Authenticity. In: Lim, J., Lee, D. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 352–369. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Boyen, X.: Multipurpose Identity-Based Signcryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 383–399. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Shin, J., Lee, K., Shim, K.: New DSA-Verifiable Signcryption Schemes. In: Lee, P., Lim, C. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 35–47. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Bao, F., Deng, R.H.: A Signcryption Scheme with Signature Directly Verifiable by Public Key. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 55–59. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Barbosa, M., Farshim, P.: Delegatable homomorphic encryption with applications to fully secure outsourcing of computation. Cryptology ePrint Archive, Report 2011/215 (2011)Google Scholar
  13. 13.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted Signatures from Bilinear Maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Rückert, M., Schröder, D.: Security of Verifiably Encrypted Signatures and a Construction without Random Oracles. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 17–34. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Rückert, M.: Verifiably Encrypted Signatures from RSA without NIZKs. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 363–377. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential Aggregate Signatures and Multisignatures Without Random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Rückert, M., Schneider, M., Schröoder, D.: Generic Constructions for Verifiably Encrypted Signatures without Random Oracles or NIZKs. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 69–86. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Zheng, Y.: Digital Signcryption or How to Achieve Cost (Signature & Encryption) < < Cost(Signature) + Cost(Encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)Google Scholar
  19. 19.
    Matsuda, T., Matsuura, K., Schuldt, J.C.N.: Efficient Constructions of Signcryption Schemes and Signcryption Composability. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 321–342. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28, 270–299 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University Press, New York (2000)Google Scholar
  22. 22.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xuhua Zhou
    • 1
  • Xuhua Ding
    • 2
  • Kefei Chen
    • 1
    • 3
  1. 1.Shanghai Jiao Tong UniversityChina
  2. 2.Singapore Management UniversitySingapore
  3. 3.Shanghai Key Laboratory of Scalable Computing and SystemsShanghaiChina

Personalised recommendations