Advertisement

An Efficient IND-CCA2 Secure Variant of the Niederreiter Encryption Scheme in the Standard Model

  • K. Preetha Mathew
  • Sachin Vasant
  • Sridhar Venkatesan
  • C. Pandu Rangan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7372)

Abstract

In this paper, we propose an IND-CCA2 secure code based encryption scheme in the standard model, built on the Niederreiter encryption scheme. The security of the scheme is based on the hardness of the Syndrome Decoding problem and the Goppa Code Distinguishability problem. The system is developed according to the construction similar to IND-CCA2 secure encryption scheme by Peikert and Waters using the lossy trapdoor functions. Compared to the existing IND-CCA2 secure variants due to Dowsley et.al. and Freeman et. al. (using the κ repetition paradigm initiated by Rosen and Segev), our scheme is more efficient as it avoids κ repetitions. This can be considered as the first practical code-based encryption scheme that is IND-CCA2 secure in the standard model.

Keywords

Standard Model CCA-2 security Neiderreiter Cryptosystem Syndrome Decoding Code Indistinguishability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Barreto, P.S.L.M., Misoczki, R., Simplício Jr., M.A.: One-time signature scheme from syndrome decoding over generic error-correcting codes. Journal of Systems and Software 84(2), 198–204 (2011)CrossRefGoogle Scholar
  3. 3.
    Berson, T.A.: Failure of the McEliece Public-Key Cryptosystem under Message-Resend and Related-Message Attack. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 213–220. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM 51(4), 557–594 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22, 644–654 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Dowsley, R., Müller-Quade, J., Nascimento, A.C.A.: A CCA2 Secure Public Key Encryption Scheme Based on the McEliece Assumptions in the Standard Model. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 240–251. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Faugére, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic Cryptanalysis of McEliece variants with compact keys – toward a complexity analysis. In: SCC 2010: Proceedings of the 2nd International Conference on Symbolic Computation and Cryptography, pp. 45–55. RHUL (June 2010)Google Scholar
  10. 10.
    Finiasz, M., Sendrier, N.: Security Bounds for the Design of Code-Based Cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Fischer, J.-B., Stern, J.: An Efficient Pseudo-random Generator Provably as Secure as Syndrome Decoding. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 245–255. Springer, Heidelberg (1996)Google Scholar
  12. 12.
    Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More Constructions of Lossy and Correlation-Secure Trapdoor Functions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–295. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob. Contr. Inform. Theor. 15, 159–166 (1986)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Håstad, J.: Solving simultaneous modular equations of low degree. SIAM J. Comput. 17(2), 336–341 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Kobara, K., Imai, H.: Semantically Secure McEliece Public-Key Cryptosystems-Conversions for McEliece PKC. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 19–35. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Li, Y.X., Deng, R.H., Wang, X.M.: On the equivalence of McEliece’s and Niederreiter’s public-key cryptosystems. IEEE Transactions on Information Theory 40(1), 271–273 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC, pp. 427–437. ACM (1990)Google Scholar
  18. 18.
    Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the McEliece cryptosystem without random oracles. Des. Codes Cryptography 49(1-3), 289–305 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Dwork, C. (ed.) STOC, pp. 187–196. ACM (2008)Google Scholar
  20. 20.
    Rackoff, C., Simon, D.R.: Non-interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  21. 21.
    Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems (reprint). Commun. ACM 26(1), 96–99 (1983)CrossRefGoogle Scholar
  22. 22.
    McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. JPL DSN Progress Report, 114–116 (1978)Google Scholar
  23. 23.
    Rosen, A., Segev, G.: Chosen-Ciphertext Security via Correlated Products. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • K. Preetha Mathew
    • 1
  • Sachin Vasant
    • 2
  • Sridhar Venkatesan
    • 2
  • C. Pandu Rangan
    • 1
  1. 1.Theoretical Computer Science Lab, Department of Computer Science and EngineeringIndian Institute of Technology MadrasIndia
  2. 2.Department of Mathematics and Computer ApplicationsPSG College of TechnologyCoimbatoreIndia

Personalised recommendations