Skip to main content

Optimal Bounds for Multi-Prime Φ-Hiding Assumption

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7372))

Abstract

We propose a novel attack against the Multi-Prime Φ-Hiding Problem, which was introduced by Kiltz et al. at CRYPTO 2010 to show the instantiability of RSA-OAEP. The cryptanalysis of the Multi-Prime Φ-Hiding Problem is also mentioned by them. At Africacrypt 2011, Herrmann improved their result by making use of the special structure of the polynomial that is derived from the problem instance. In his method, the bound on e is reduced by employing a linear equation with fewer variables. In order to optimize the size and number of variables, we examine every possible variable size and number of variables. Then, we show that our attack achieves a better bound than that of Herrmann, which shows that our attack is the best among all known attacks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  2. Cachin, C., Micali, S., Stadler, M.A.: Computationally Private Information Retrieval with Polylogarithmic Communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

    Google Scholar 

  3. Coppersmith, D.: Finding a Small Root of a Bivariate Integer Equation; Factoring with High Bits Known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 178–189. Springer, Heidelberg (1996)

    Google Scholar 

  4. Coppersmith, D.: Small solutions to polynomial equations, and low exponent rsa vulnerabilities. J. of Cryptology 10(4), 233–260 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fujisaki, E., Okamoto, T., Pointchval, D., Stern, J.: Rsa-oaep is secure under the rsa assumption. J. of Cryptology 17(2), 81–104 (2004)

    Article  MATH  Google Scholar 

  6. Herrmann, M.: Improved Cryptanalysis of the Multi-Prime φ - Hiding Assumption. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 92–99. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Herrmann, M., May, A.: Solving Linear Equations Modulo Divisors: On Factoring Given Any Bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 406–424. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Howgrave-Graham, N.: Approximate Integer Common Divisors. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under Chosen-Plaintext Attack. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 295–313. Springer, Heidelberg (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tosu, K., Kunihiro, N. (2012). Optimal Bounds for Multi-Prime Φ-Hiding Assumption. In: Susilo, W., Mu, Y., Seberry, J. (eds) Information Security and Privacy. ACISP 2012. Lecture Notes in Computer Science, vol 7372. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31448-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31448-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31447-6

  • Online ISBN: 978-3-642-31448-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics