Skip to main content

Advanced Image Analysis for Automated Mapping of Landslide Surface Fissures

  • Chapter
  • First Online:

Abstract

Surface fissures are potential indicators of slope instabilities and considerably influence infiltration characteristics of the soil. The increasing availability of unmanned aerial vehicles (UAVs) enables the observation of surface features at unprecedented detail and this study develops an image processing method combining Gaussian filters and object-oriented image analysis to map such features in very-high resolution (VHR) aerial images largely automatically. At three different time steps the results of the technique are compared with expert elaborated maps.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abramson LW, Lee TS, Sharma S, Boyce GM (2001) Slope stability and stabilization methods. In: vol 2nd edn. Wiley, p 736

    Google Scholar 

  • Baum RL, Fleming RW (1991) Use of longitudinal strain in identifying driving and resisting elements of landslides. Geol Soc Am Bull 103:1121–1132

    Article  Google Scholar 

  • Bièvre G, Jongmans D, Winiarski T, Zumbo V (2011) Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves area, French Alps). Hydrol Process. doi:n/a-n/a. doi:10.1002/hyp.7986

  • Chaudhuri S, Chatterjee S, Katz N, Nelson M, Goldbaum M (1989) Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans Med Imag 8(3):263–269

    Article  Google Scholar 

  • Chowdhury RN, Zhang S (1991) Tension cracks and slope failure. In: Paper presented at the international conference in slope stability engineering: developments and applications. Proceedings of an international conference, Isle of Wight

    Google Scholar 

  • Corominas J, Moya J, Hürlimann M (2002) Landslide rainfall triggers in the Spanish eastern Pyrenees. In: Paper presented at the 4th EGS Plinius conference on Mediterranean storms, Mallorca, 4 Oct

    Google Scholar 

  • Fleming RW, Baum RL, Giardino M (1999) Map and description of the active part of the slumgullion landslide, Hinsdale County. Geologic invstigations Series Map I-2672. U.S. Geologcial Survey, p 36

    Google Scholar 

  • Fleming RW, Johnson AM (1989) Structures associated with strike-slip faults that bound landslide elements. Eng Geol 27(1–4):39–114. doi:10.1016/0013-7952(89)90031-8

    Article  Google Scholar 

  • Grandjean G, Bitri A, Krzeminska DM (2011) Characterisation of a landslide fissure pattern by integrating seismic azimuth tomography and geotechnical testing. Hydrol Process. doi:n/a-n/a. doi:10.1002/hyp.7993

  • Günther A, Carstensen A, Pohl W (2004) Automated sliding susceptibility mapping of rock slopes. Nat Hazards Ear Syst Sci 4:95–102

    Article  Google Scholar 

  • Hoek E, Bray JW (1981) Rock slope engineering. The Institution of Mining and Metallurgy, London

    Google Scholar 

  • Hoover AD, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imag 19(3):203–210

    Article  Google Scholar 

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897–1910

    Article  Google Scholar 

  • Jaboyedoff M, Baillifard F, Couture R, Locat J, Locat P (2004) Toward preliminary hazard assessment using DEM topographic analysis and simple mechanical modeling by means of sloping local base level. In: Lacerda WA, Ehrlich M, Fontoura AB, Sayão A (eds) Landslides: evaluation and stabilization. Taylor & Francis Group, London, pp 199–205

    Google Scholar 

  • Krauskopf KB, Feitler S, Griggs AB et al (1939) Structural features of a landslide near Gilroy, California. J Geol 47(6):630–648

    Article  Google Scholar 

  • Lindenmaier F, Zehe E, Dittfurth A, Ihringer J (2005) Process identification at a slow-moving landslide in the Vorarlberg Alps. Hydrol Process 19(8):1635–1651. doi:10.1002/hyp.5592

    Article  Google Scholar 

  • Malet J-P, Auzet A-V, Maquaire O, Ambroise B, Descroix L, Esteves M, Vandervaere J-P, Truchet E (2003) Soil surface characteristics influence on infiltration in black marls: application to the Super-Sauze earth flow (southern Alps, France). Earth Surf Process Land 28(5):547–564

    Article  Google Scholar 

  • Malet JP, van Asch TWJ, van Beek R, Maquaire O (2005) Forecasting the behaviour of complex landslides with a spatially distributed hydrological model. Nat Hazards Ear Syst Sci 5(1):71–85. doi:10.5194/nhess-5-71-2005

    Article  Google Scholar 

  • Matheson GD (1983) Rock stability assessment in preliminary site investigations – graphical methods. vol Report 1039. Transport and Road Research Laboratory, Crownthorne

    Google Scholar 

  • McCalpin J (1984) Preliminary age classification of landslides for inventory mapping. In: Paper presented at the 21st Annual engineering geology and soils engineering symposium, Moscow, 5–6 April

    Google Scholar 

  • Meisina C (2006) Characterisation of weathered clayey soils responsible for shallow landslides. Nat Hazards Ear Syst Sci 6(5):825–838. doi:10.5194/nhess-6-825-2006

    Article  Google Scholar 

  • Mendonca AM, Campilho A (2006) Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans Med Imag 25(9):1200–1213

    Article  Google Scholar 

  • Niethammer U, James MR, Rothmund S, Travelletti J, Joswig M (2011) UAV-based remote sensing of the Super-Sauze landslide: evaluation and results. Engineering geology, Accepted Manuscript. doi:10.1016/j.enggeo.2011.03.012 (in press)

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Systs Man Cybernetics 9(1):62–66

    Article  Google Scholar 

  • Parise M (2003) Observation of surface features on an active landslide, and implications for understanding its history of movement. Nat Hazards Ear Syst Sci 3(6):569–580. doi:10.5194/nhess-3-569-2003

    Article  Google Scholar 

  • Petley D, Dunning S, Rosser N, Kausar AB (2006) Incipient landslides in the Jhelum Valley, Pakistan following the 8th October 2005 earthquake. In: Paper presented at the disaster mitigation of debris flows, slope failures and landslides, Tokyo

    Google Scholar 

  • Priest SD (1993) Discontinuity analysis for rock engineering. Chapman & Hall, London, UK

    Book  Google Scholar 

  • Selby MJ (1993) Hillslope materials and processes, vol Second. Oxford University Press, Oxford, UK

    Google Scholar 

  • Shreve RL (1966) Sherman Landslide, Alaska. Science 154(3757):1639–1643. doi:10.1126/science.154.3757.1639

    Article  Google Scholar 

  • Soares JVB, Leandro JJG, Cesar RM, Jelinek HF, Cree MJ (2006) Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imag 25(9):1214–1222

    Article  Google Scholar 

  • Sofka M, Stewart CV (2006) Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures. IEEE Trans Med Imag 25(12):1531–1546

    Article  Google Scholar 

  • Trimble (2011) Trimble eCognition® 8.64.0 Release Notes

    Google Scholar 

  • van Asch TWJ, van Beek LPH, Bogaard TA (2009) The diversity in hydrological triggering systems of landslides. In: The First Italian workshop on landslide, Napoli, 8–10 June 2009, pp 151–156

    Google Scholar 

  • van Beek L, van Asch T (1999) A combined conceptual model for the effects of fissure-induced infiltration on slope stability. In: Hergarten S, Neugebauer H (eds) Process modelling and landform evolution, vol 78. Lecture notes in Earth sciences. Springer, Berlin/Heidelberg, pp 147–167. doi:10.1007/BFb0009724

  • Zhang B, Zhang L, Zhang L, Karray F (2010) Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput Biol Med 40(4):438–445. doi:10.1016/j.compbiomed.2010.02.008

    Article  Google Scholar 

Download references

Acknowledgments

The work described in this paper was supported by the project SafeLand “Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies” under Grant Agreement No. 226479 in the 7th Framework Programme of the European Commission, the project SISCA ‘Système Intégré de Surveillance de Crises de Glissements de Terrain’ funded by the French Research Agency (ANR), and the project Grosshang “Coupling of Flow and Deformation Processes for Modeling the Movement of Natural Slopes” funded by the Deutsche Forschungsgemeinschaft (DFG). These supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Stumpf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stumpf, A. et al. (2013). Advanced Image Analysis for Automated Mapping of Landslide Surface Fissures. In: Margottini, C., Canuti, P., Sassa, K. (eds) Landslide Science and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31445-2_46

Download citation

Publish with us

Policies and ethics